Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

TDCOSMO 2025: Cosmological constraints from strong lensing time delays

(2025)

Authors:

TDCOSMO Collaboration, Simon Birrer, Elizabeth J Buckley-Geer, Michele Cappellari, Frà dà ric Courbin, Frà dà ric Dux, Christopher D Fassnacht, Joshua A Frieman, Aymeric Galan, Daniel Gilman, Xiang-Yu Huang, Shawn Knabel, Danial Langeroodi, Huan Lin, Martin Millon, Takahiro Morishita, Veronica Motta, Pritom Mozumdar, Eric Paic, Anowar J Shajib, William Sheu, Dominique Sluse, Alessandro Sonnenfeld, Chiara Spiniello, Massimo Stiavelli, Sherry H Suyu, Chin Yi Tan, Tommaso Treu, Lyne Van de Vyvere, Han Wang, Patrick Wells, Devon M Williams, Kenneth C Wong
More details from the publisher

Project Dinos II: redshift evolution of dark and luminous matter density profiles in strong-lensing elliptical galaxies across 0.1 < z < 0.9

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:1 (2025) 1-27

Authors:

William Sheu, Anowar J Shajib, Tommaso Treu, Alessandro Sonnenfeld, Simon Birrer, Michele Cappellari, Lindsay J Oldham, Chin Yi Tan

Abstract:

We present a new measurement of the dark and luminous matter distribution of massive elliptical galaxies, and their evolution with redshift, by combining strong lensing and dynamical observables. Our sample of 56 lens galaxies covers a redshift range of . By combining new Hubble Space Telescope imaging with previously observed velocity dispersion and line-of-sight measurements, we decompose the luminous matter profile from the dark matter profile and perform a Bayesian hierarchical analysis to constrain the population-level properties of both profiles. We find that the inner slope of the dark matter density profile (‘cusp’; ) is consistent ( with intrinsic scatter) with a standard Navarro–Frenk–White (NFW; ) at . Additionally, we find an appreciable evolution with redshift () resulting in a shallower slope (of tension from NFW) at redshifts . This is in excellent agreement with previous population-level observational studies, as well as with predictions from hydrodynamical simulations such as IllustrisTNG. We also find the stellar mass-to-light ratio at the population level is consistent with that of a Salpeter initial mass function, a small stellar mass-to-light gradient [, with ], and isotropic stellar orbits. Our averaged total mass density profile is consistent with a power-law profile within 0.25 to 4 Einstein radii (), with an internal mass-sheet transformation parameter consistent with no mass sheet. Our findings confirm the validity of the standard mass models used for time-delay cosmography.
More details from the publisher
Details from ORA
More details

Project Dinos II: Redshift evolution of dark and luminous matter density profiles in strong-lensing elliptical galaxies across $0.1 < z < 0.9$

(2025)

Authors:

William Sheu, Anowar J Shajib, Tommaso Treu, Alessandro Sonnenfeld, Simon Birrer, Michele Cappellari, Lindsay J Oldham, Chin Yi Tan
More details from the publisher

XXII. Accurate stellar velocity dispersions of the SL2S lens sample and the lensing mass fundamental plane

(2025)

Authors:

Pritom Mozumdar, Shawn Knabel, Tommaso Treu, Alessandro Sonnenfeld, Anowar J Shajib, Michele Cappellari, Carlo Nipoti
More details from the publisher

When relics were made: vigorous stellar rotation and low dark matter content in the massive ultra-compact galaxy GS-9209 at z=4.66

(2025)

Authors:

Robert G Pascalau, Francesco D'Eugenio, Sandro Tacchella, Roberto Maiolino, Michele Cappellari, Claudia del P Lagos, Andrew J Bunker, Gareth C Jones, Jan Scholtz, Hannah Übler, Giovanni Cresci, Santiago Arribas, Michele Perna, Arjen van der Wel, A Lola Danhaive, William McClymont, Akash Vani, Michael V Maseda, Adam C Carnall, Stéphane Charlot, Stefano Carniani, Qiao Duan, Tze P Goh, Anna de Graaff, Zhiyuan Ji, Pablo Pérez-González
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet