Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

The data analysis pipeline for the SDSS-IV MaNGA IFU galaxy survey: Emission-line modeling

Astronomical Journal American Astronomical Society 158:4 (2019) 160

Authors:

Francesco Belfiore, Kyle B Westfall, Adam Schaefer, Michele Cappellari, Et al.

Abstract:

SDSS-IV MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is the largest integral-field unit (IFU) spectroscopy survey to date, aiming to observe a statistically representative sample of 10,000 low-redshift galaxies. In this paper, we study the reliability of the emission-line fluxes and kinematic properties derived by the MaNGA Data Analysis Pipeline (DAP). We describe the algorithmic choices made in the DAP with regards to measuring emission-line properties, and the effect of our adopted strategy of simultaneously fitting the continuum and line emission. The effects of random errors are quantified by studying various fit-quality metrics, idealized recovery simulations, and repeat observations. This analysis demonstrates that the emission lines are well fit in the vast majority of the MaNGA data set and the derived fluxes and errors are statistically robust. The systematic uncertainty on emission-line properties introduced by the choice of continuum templates is also discussed. In particular, we test the effect of using different stellar libraries and simple stellar-population models on the derived emission-line fluxes and the effect of introducing different tying prescriptions for the emission-line kinematics. We show that these effects can generate large (>0.2 dex) discrepancies at low signal-to-noise ratio and for lines with low equivalent width (EW); however, the combined effect is noticeable even for Hα EW > 6 Å. We provide suggestions for optimal use of the data provided by SDSS data release 15 and propose refinements on the DAP for future MaNGA data releases.
More details from the publisher
Details from ORA
More details

WISDOM project – V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) 319-330

Authors:

EV North, TA Davis, Martin Bureau, Michele Cappellari, S Iguchi, L Liu, K Onishi, M Sarzi, Smith, TG Williams

Abstract:

As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM), we present a measurement of the mass of the supermassive black hole (SMBH) in the nearby early-type galaxy NGC 0383 (radio source 3C 031). This measurement is based on Atacama Large Millimeter/sub-millimeter Array (ALMA) cycle 4 and 5 observations of the 12CO(2–1) emission line with a spatial resolution of 58 × 32 pc2 (0.18 arcsec × 0.1 arcsec). This resolution, combined with a channel width of 10 km s−1, allows us to well resolve the radius of the black hole sphere of influence (measured as RSOI = 316 pc  =  0.98 arcsec), where we detect a clear Keplerian increase of the rotation velocities. NGC 0383 has a kinematically relaxed, smooth nuclear molecular gas disc with weak ring/spiral features. We forward model the ALMA data cube with the Kinematic Molecular Simulation (KinMS) tool and a Bayesian Markov Chain Monte Carlo method to measure an SMBH mass of (4.2 ± 0.7) × 109 M⊙, a F160W-band stellar mass-to-light ratio that varies from 2.8 ± 0.6 M⊙/L$_{\odot ,\, \mathrm{F160W}}$ in the centre to 2.4 ± 0.3 M⊙$/\rm L_{\odot ,\, \mathrm{F160W}}$ at the outer edge of the disc and a molecular gas velocity dispersion of 8.3 ± 2.1 km s−1(all 3σ uncertainties). We also detect unresolved continuum emission across the full bandwidth, consistent with synchrotron emission from an active galactic nucleus. This work demonstrates that low-J CO emission can resolve gas very close to the SMBH ($\approx 140\, 000$ Schwarzschild radii) and hence that the molecular gas method is highly complimentary to megamaser observations, as it can probe the same emitting material.
More details from the publisher
Details from ORA
More details

WISDOM project -- V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383

(2019)

Authors:

Eve V North, Timothy A Davis, Martin Bureau, Michele Cappellari, Satoru Iguchi, Lijie Liu, Kyoko Onishi, Marc Sarzi, Mark D Smith, Thomas G Williams
More details from the publisher

First Gaia dynamical model of the Milky Way disc with six phase space coordinates: a test for galaxy dynamics

(2019)

Authors:

Maria Selina Nitschai, Michele Cappellari, Nadine Neumayer
More details from the publisher

The impact of AGN on stellar kinematics and orbits in simulated massive galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:2 (2019) 2702-2722

Authors:

M Frigo, T Naab, M Hirschmann, E Choi, RS Somerville, D Krajnovic, R Davé, Michele Cappellari

Abstract:

We present a series of 10 × 2 cosmological zoom simulations of the formation of massive galaxies with and without a model for active galactic nucleus (AGN) feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit maps. The impact of the AGN is weak at high redshift when all systems are mostly fast rotating and disc-like. After z ∼ 1 the AGN simulations result in lower mass, older, less metal rich, and slower rotating systems with less discy isophotes – in general agreement with observations. 2D kinematic maps of in situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, ξ3, to characterize the anticorrelation between the third-order kinematic moment h3 and the line-of-sight velocity (Vavg/σ), and compare to ATLAS3D observations. The kinematic correlation parameter ξ3 might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet