The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 235:2 (2018) ARTN 42
A quartet of black holes and a missing duo: probing the low-end of the Mbh - sigma relation with the adaptive optics assisted integral-field spectroscopy
(2018)
The KMOS Cluster Survey (KCS). II. The effect of environment on the structural properties of massive cluster galaxies at redshift 1.39 < z < 1.61
Astrophysical Journal American Astronomical Society 856:1 (2018) 8
Abstract:
We present results on the structural properties of massive passive galaxies in three clusters at 1.39 < z < 1.61 from the KMOS Cluster Survey. We measure light-weighted and mass-weighted sizes from optical and near-infrared Hubble Space Telescope imaging and spatially resolved stellar mass maps. The rest-frame R-band sizes of these galaxies are a factor of ∼2-3 smaller than their local counterparts. The slopes of the relation between the stellar mass and the light-weighted size are consistent with recent studies in clusters and the field. Their mass-weighted sizes are smaller than the rest-frame R-band sizes, with an average mass-weighted to light-weighted size ratio that varies between ∼0.45 and 0.8 among the clusters. We find that the median light-weighted size of the passive galaxies in the two more evolved clusters is ∼24% larger than that for field galaxies, independent of the use of circularized effective radii or semimajor axes. These two clusters also show a smaller size ratio than the less evolved cluster, which we investigate using color gradients to probe the underlying gradients. The median color gradients are ∇z - H ∼ -0.4 mag dex -1 , twice the local value. Using stellar populations models, these gradients are best reproduced by a combination of age and metallicity gradients. Our results favor the minor merger scenario as the dominant process responsible for the observed galaxy properties and the environmental differences at this redshift. The environmental differences support that clusters experience accelerated structural evolution compared to the field, likely via an epoch of enhanced minor merger activity during cluster assembly.SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties
Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 4711-4737
Abstract:
We measure λRe, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ∈, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λRe; ∈) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λRe measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λRe . Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λRe; ∈) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λRe and ∈ < 0:4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above a stellar mass of 2 x 10^11 M⊙ where a significant number of high-mass fast rotators also exist.SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties
(2018)