Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

Recovering stellar population parameters via two full-spectrum fitting algorithms in the absence of model uncertainties

Monthly Notices of the Royal Astronomical Society Oxford University Press 478:2 (2018) 2633-2649

Authors:

J Ge, R Yan, Michele Cappellari, S Mao, H Li, Y Lu

Abstract:

Using mock spectra based on Vazdekis/MILES library fitted within the wavelength region 3600-7350\AA, we analyze the bias and scatter on the resulting physical parameters induced by the choice of fitting algorithms and observational uncertainties, but avoid effects of those model uncertainties. We consider two full-spectrum fitting codes: pPXF and STARLIGHT, in fitting for stellar population age, metallicity, mass-to-light ratio, and dust extinction. With pPXF we find that both the bias in the population parameters and the scatter in the recovered logarithmic values follows the expected trend. The bias increases for younger ages and systematically makes recovered ages older, M∗/Lr larger and metallicities lower than the true values. For reference, at S/N=30, and for the worst case (t=108yr), the bias is 0.06 dex in M∗/Lr, 0.03 dex in both age and [M/H]. There is no significant dependence on either E(B-V) or the shape of the error spectrum. Moreover, the results are consistent for both our 1-SSP and 2-SSP tests. With the STARLIGHT algorithm, we find trends similar to pPXF, when the input E(B-V)<0.2 mag. However, with larger input E(B-V), the biases of the output parameter do not converge to zero even at the highest S/N and are strongly affected by the shape of the error spectra. This effect is particularly dramatic for youngest age, for which all population parameters can be strongly different from the input values, with significantly underestimated dust extinction and [M/H], and larger ages and M∗/Lr. Results degrade when moving from our 1-SSP to the 2-SSP tests. The STARLIGHT convergence to the true values can be improved by increasing Markov Chains and annealing loops to the "slow mode". For the same input spectrum, pPXF is about two order of magnitudes faster than STARLIGHT's "default mode" and about three order of magnitude faster than STARLIGHT's "slow mode".
More details from the publisher
Details from ORA
More details

The black hole in the most massive ultracompact dwarf galaxy M59-UCD3

Astrophysical Journal American Astronomical Society 858:2 (2018) 102

Authors:

CP Ahn, AC Seth, Michele Cappellari, Et al.

Abstract:

We examine the internal properties of the most massive ultracompact dwarf galaxy (UCD), M59-UCD3, by combining adaptive-optics-assisted near-IR integral field spectroscopy from Gemini/NIFS and Hubble Space Telescope (HST) imaging. We use the multiband HST imaging to create a mass model that suggests and accounts for the presence of multiple stellar populations and structural components. We combine these mass models with kinematics measurements from Gemini/NIFS to find a best-fit stellar mass-to-light ratio (M/L) and black hole (BH) mass using Jeans anisotropic models (JAMs), axisymmetric Schwarzschild models, and triaxial Schwarzschild models. The best-fit parameters in the JAM and axisymmetric Schwarzschild models have BHs between 2.5 and 5.9 million solar masses. The triaxial Schwarzschild models point toward a similar BH mass but show a minimum χ 2 at a BH mass of ~0. Models with a BH in all three techniques provide better fits to the central V rms profiles, and thus we estimate the BH mass to be ${4.2}_{-1.7}^{+2.1}\times {10}^{6}$ M ⊙ (estimated 1σ uncertainties). We also present deep radio imaging of M59-UCD3 and two other UCDs in Virgo with dynamical BH mass measurements, and we compare these to X-ray measurements to check for consistency with the fundamental plane of BH accretion. We detect faint radio emission in M59cO but find only upper limits for M60-UCD1 and M59-UCD3 despite X-ray detections in both these sources. The BH mass and nuclear light profile of M59-UCD3 suggest that it is the tidally stripped remnant of a ~109–1010 M ⊙ galaxy.
More details from the publisher
Details from ORA
More details

Nearby Early-type Galactic Nuclei at High Resolution: Dynamical Black Hole and Nuclear Star Cluster Mass Measurements

ASTROPHYSICAL JOURNAL 858:2 (2018) ARTN 118

Authors:

Dieu D Nguyen, Anil C Seth, Nadine Neumayer, Sebastian Kamann, Karina T Voggel, Michele Cappellari, Arianna Picotti, Phuong M Nguyen, Torsten Boker, Victor Debattista, Nelson Caldwell, Richard McDermid, Nathan Bastian, Christopher C Ahn, Renuka Pechetti
More details from the publisher
Details from ORA
More details

Recovering stellar population parameters via two full-spectrum fitting algorithms in the absence of model uncertainties

(2018)

Authors:

Junqiang Ge, Renbin Yan, Michele Cappellari, Shude Mao, Hongyu Li, Youjun Lu
More details from the publisher

The Black Hole in the Most Massive Ultracompact Dwarf Galaxy M59-UCD3

(2018)

Authors:

Christopher P Ahn, Anil C Seth, Michele Cappellari, Davor Krajnović, Jay Strader, Karina T Voggel, Jonelle L Walsh, Arash Bahramian, Holger Baumgardt, Jean Brodie, Igor Chilingarian, Laura Chomiuk, Mark den Brok, Matthias Frank, Michael Hilker, Richard M McDermid, Steffen Mieske, Nadine Neumayer, Dieu D Nguyen, Renuka Pechetti, Aaron J Romanowsky, Lee Spitler
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet