Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

(2017)

Authors:

Nicholas F Boardman, Anne-Marie Weijmans, Remco van den Bosch, Harald Kuntschner, Eric Emsellem, Michele Cappellari, Tim de Zeeuw, Jesus Falcon-Barroso, Davor Krajnovic, Richard McDermid, Thorsten Naab, Glenn van de Ven, Akin Yildirim
More details from the publisher

Two channels of supermassive black hole growth as seen on the galaxies mass-size plane

(2017)

Authors:

Davor Krajnović, Michele Cappellari, Richard M McDermid
More details from the publisher

Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

Monthly Notices of the Royal Astronomical Society Oxford University Press 471:4 (2017) 4005-4026

Authors:

NF Boardman, A-M Weijmans, R van den Bosch, H Kuntschner, E Emsellem, Michele Cappellari, T de Zeeuw, J Falcón-Barroso, D Krajnović, R McDermid, T Naab, G van de Ven, A Yildirim

Abstract:

We observed 12 nearby HI-detected early-type galaxies (ETGs) of stellar mass ∼10^10M⊙ ≤ M∗ ≤ ∼10^11 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used Hβ, Fe5015, Mgb, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat Hβ gradients and negative Mgb gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients.We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.
More details from the publisher
Details from ORA
More details
More details

The Spectroscopy and H-band Imaging of Virgo Cluster Galaxies (SHIVir) survey: Scaling relations and the stellar-to-total mass relation

Astrophysical Journal Institute of Physics 843:1 (2017) 74

Authors:

NN-Q Ouellette, S Courteau, JA Holtzman, AA Dutton, Michele Cappellari, JJ Dalcanton, M McDonald, JC Roediger, JE Taylor, RB Tully, P Côté, L Ferrarese, EW Peng

Abstract:

We present here parameter distributions and fundamental scaling relations for 190 galaxies as part of the Spectroscopy and H-bang Imaging of Virgo cluster galaxies (SHIVir) survey. We find the distribution of galaxy velocities to be bimodal about $V_{\rm circ} \sim 125$ km ${\rm s^{-1}}$, hinting at the existence of dynamically unstable modes in the inner regions of galaxies. An analysis of the Tully-Fisher relation (TFR) of late-type galaxies (LTGs) and fundamental plane (FP) of early-type galaxies (ETGs) is also presented, yielding a compendium of galaxy scaling relations. The slope and zero-point of the Virgo TFR match those of field galaxies, while scatter differences likely reflect distinct evolutionary histories. The velocities minimizing scatter for the TFR and FP are measured at large apertures where the baryonic fraction becomes subdominant. While TFR residuals remain independent of any galaxy parameters, FP residuals (i.e. the FP "tilt") correlate strongly with the dynamical-to-stellar mass ratio, yielding stringent galaxy formation constraints. Furthermore, we construct a stellar-to-total mass relation (STMR) for ETGs and LTGs and find linear but distinct trends over the range $M_{*} = 10^{8-11} M_{\odot}$. Stellar-to-halo mass relations (SHMRs), which probe the extended dark matter halo, can be scaled down to masses estimated within the optical radius, showing a tight match with the Virgo STMR at low masses; however, possibly inadequate halo abundance matching prescriptions and broad radial scalings complicate this comparison at all masses. While ETGs appear to be more compact than LTGs of the same stellar mass in projected space, their mass-size relations in physical space are identical. The trends reported here call for validation through well-resolved numerical simulations.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant Universe

Astronomical Journal Institute of Physics 154:1 (2017) 28

Authors:

MA Bershady, B Abolfathi, Michele Cappellari, Roger Davies

Abstract:

We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet