Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

The KMOS Cluster Survey (KCS). II. The effect of environment on the structural properties of massive cluster galaxies at redshift 1.39 < z < 1.61

Astrophysical Journal American Astronomical Society 856:1 (2018) 8

Authors:

JCC Chan, A Beifiori, RP Saglia, JT Mendel, John Stott, R Bender, A Galametz, DJ Wilman, Michele Cappellari, Roger Davies, Ryan Houghton, Laura Prichard, Ian Lewis, R Sharples, M Wegner

Abstract:

We present results on the structural properties of massive passive galaxies in three clusters at 1.39 < z < 1.61 from the KMOS Cluster Survey. We measure light-weighted and mass-weighted sizes from optical and near-infrared Hubble Space Telescope imaging and spatially resolved stellar mass maps. The rest-frame R-band sizes of these galaxies are a factor of ∼2-3 smaller than their local counterparts. The slopes of the relation between the stellar mass and the light-weighted size are consistent with recent studies in clusters and the field. Their mass-weighted sizes are smaller than the rest-frame R-band sizes, with an average mass-weighted to light-weighted size ratio that varies between ∼0.45 and 0.8 among the clusters. We find that the median light-weighted size of the passive galaxies in the two more evolved clusters is ∼24% larger than that for field galaxies, independent of the use of circularized effective radii or semimajor axes. These two clusters also show a smaller size ratio than the less evolved cluster, which we investigate using color gradients to probe the underlying gradients. The median color gradients are ∇z - H ∼ -0.4 mag dex -1 , twice the local value. Using stellar populations models, these gradients are best reproduced by a combination of age and metallicity gradients. Our results favor the minor merger scenario as the dominant process responsible for the observed galaxy properties and the environmental differences at this redshift. The environmental differences support that clusters experience accelerated structural evolution compared to the field, likely via an epoch of enhanced minor merger activity during cluster assembly.
More details from the publisher
Details from ORA
More details
More details

SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 4711-4737

Authors:

Mark T Graham, Michele Cappellari, H Li, S Mao, M Bershady, D Bizyaev, J Brinkmann, K Bundy, N Drory, K Pan, D Thomas, DA Wake, A-M Weijmans, KB Westfall, R Yan

Abstract:

We measure λRe, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ∈, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λRe; ∈) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λRe measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λRe . Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λRe; ∈) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λRe and ∈ < 0:4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above a stellar mass of 2 x 10^11 M⊙ where a significant number of high-mass fast rotators also exist.
More details from the publisher
Details from ORA
More details

SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

(2018)

Authors:

Mark T Graham, Michele Cappellari, Hongyu Li, Shude Mao, Matthew Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Joel R Brownstein, Kevin Bundy, Niv Drory, David R Law, Kaike Pan, Daniel Thomas, David A Wake, Anne-Marie Weijmans, Kyle B Westfall, Renbin Yan
More details from the publisher

SDSS-IV MaNGA: Global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

Monthly Notices of the Royal Astronomical Society Oxford University Press 476:2 (2018) 1765-1775

Authors:

H Li, S Mao, Michele Cappellari, J Ge, RJ Long, R Li, HJ Mo, C Li, Z Zheng, K Bundy, D Thomas, AR Lopes, N Drory

Abstract:

We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling (JAM) of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (‘the mass-size’ plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive ( centre
More details from the publisher
Details from ORA
More details

SDSS-IV MaNGA: Global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

(2018)

Authors:

Hongyu Li, Shude Mao, Michele Cappellari, Junqiang Ge, RJ Long, Ran Li, HJ Mo, Cheng Li, Zheng Zheng, Kevin Bundy, Daniel Thomas, Joel R Brownstein, Alexandre Roman Lopes, David R Law, Niv Drory
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet