Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

The Spectroscopy and H-band Imaging of Virgo cluster galaxies (SHIVir) Survey: Scaling Relations and the Stellar-to-Total Mass Relation

(2017)

Authors:

Nathalie N-Q Ouellette, Stéphane Courteau, Jon A Holtzman, Aaron A Dutton, Michele Cappellari, Julianne J Dalcanton, Michael McDonald, Joel C Roediger, James E Taylor, R Brent Tully, Patrick Côté, Laura Ferrarese, Eric W Peng
More details from the publisher

WISDOM Project – II. Molecular gas measurement of the supermassive black hole mass in NGC 4697

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:4 (2017) 4675-4690

Authors:

TA Davis, Martin Bureau, K Onishi, Michele Cappellari, S Iguchi, M Sarzi

Abstract:

As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC 4697. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-3 observations of the 12CO(2–1) emission line with a linear resolution of 29 pc (0.53 arcsec). We find that NGC 4697 hosts a small relaxed central molecular gas disc with a mass of 1.6 × 107 M⊙, co-spatial with the obscuring dust disc visible in optical Hubble Space Telescope imaging. We also resolve thermal 1 mm continuum emission from the dust in this disc. NGC 4697 is found to have a very low molecular gas velocity dispersion, σgas = 1.65+0.68−0.65 km s^−1. This seems to be partially because the giant molecular cloud mass function is not fully sampled, but other mechanisms such as chemical differentiation in a hard radiation field or morphological quenching also seem to be required. We detect a Keplerian increase of the rotation of the molecular gas in the very centre of NGC 4697, and use forward modelling of the ALMA data cube in a Bayesian framework with the KINematic Molecular Simulation (KINMS) code to estimate an SMBH mass of (1.3+0.18−0.17) × 108 M⊙ and an i-band mass-to-light ratio of 2.14+0.04−0.05M⊙/L⊙ (at the 99 per cent confidence level). Our estimate of the SMBH mass is entirely consistent with previous measurements from stellar kinematics. This increases confidence in the growing number of SMBH mass estimates being obtained in the ALMA era.
More details from the publisher
Details from ORA
More details
More details

SDSS-IV MaNGA: variation of the stellar initial mass function in spiral and early-type galaxies

Astrophysical Journal IOP Publishing 838:2 (2017)

Authors:

H Li, J Ge, S Mao, Michele Cappellari, RJ Long, R Li, E Emsellem, AA Dutton, C Li, K Bundy, D Thomas, N Drory, AR Lopes

Abstract:

We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier ${\mathrm{ATLAS}}^{3{\rm{D}}}$ results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.
More details from the publisher
Details from ORA
More details

WISDOM Project - I: Black Hole Mass Measurement Using Molecular Gas Kinematics in NGC 3665

(2017)

Authors:

K Onishi, S Iguchi, TA Davis, M Bureau, M Cappellari, M Sarzi, L Blitz
More details from the publisher
Details from ArXiV

WISDOM Project - II: Molecular gas measurement of the supermassive black hole mass in NGC4697

(2017)

Authors:

Timothy A Davis, Martin Bureau, Kyoko Onishi, Michele Cappellari, Satoru Iguchi, Marc Sarzi
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet