Single phase charge ordered stoichiometric CaFe3O5 with commensurate and incommensurate trimeron ordering
Nature Communications Nature Research 10:2019 (2019) 5475
Abstract:
Mixed-valent transition metal compounds display complex structural, electronic and magnetic properties which can often be exquisitely tuned. Here the charge-ordered state of stoichiometric CaFe3O5 is probed using neutron powder diffraction, Monte Carlo simulation and symmetry analysis. Magnetic ordering is dominated by the formation of ferromagnetic Fe3+–Fe2+–Fe3+ trimers which are evident above the magnetic ordering transition. Between TN =289 K and 281 K an incommensurate magnetically ordered phase develops due to magnetic frustration, but a spin Jahn-Teller distortion lifts the frustration and enables the magnetic ordering to lock in to a charge-ordered commensurate state at lower temperatures. Stoichiometric CaFe3O5 exhibits single phase behaviour throughout and avoids the phase separation into two distinct crystallographic phases with different magnetic structures and Fe valence distributions reported recently, which likely occurs due to partial Fe2+ for Ca2+ substitution. This underlines the sensitivity of the magnetism and chemistry of these mixedvalent systems to composition.Synthesis, structure, and compositional tuning of the layered oxide tellurides Sr2MnO2Cu2–xTe2 and Sr2CoO2Cu2Te2
Inorganic Chemistry American Chemical Society 58:12 (2019) 8140−8150
Abstract:
The synthesis and structure of two new transition metal oxide tellurides, Sr2MnO2Cu1.82(2)Te2 and Sr2CoO2Cu2Te2, are reported. Sr2CoO2Cu2Te2 with the purely divalent Co2+ ion in the oxide layers has magnetic ordering based on antiferromagnetic interactions between nearest neighbors and appears to be inert to attempted topotactic oxidation by partial removal of the Cu ions. In contrast, the Mn analogue with the more oxidizable transition metal ion has a 9(1)% Cu deficiency in the telluride layer when synthesized at high temperatures, corresponding to a Mn oxidation state of +2.18(2), and neutron powder diffraction revealed the presence of a sole highly asymmetric Warren-type magnetic peak, characteristic of magnetic ordering that is highly two-dimensional and not fully developed over a long range. Topotactic oxidation by the chemical deintercalation of further copper using a solution of I2 in acetonitrile offers control over the Mn oxidation state and, hence, the magnetic ordering: oxidation yielded Sr2MnO2Cu1.58(2)Te2 (Mn oxidation state of +2.42(2)) in which ferromagnetic interactions between Mn ions result from Mn2+/3+ mixed valence, resulting in a long-range-ordered A-type antiferromagnet with ferromagnetic MnO2 layers coupled antiferromagnetically.Layered CeSO and LiCeSO oxide chalcogenides obtained via topotactic oxidative and reductive transformations
Inorganic Chemistry American Chemical Society 58:6 (2019) 3838-3850
Abstract:
The chemical accessibility of the CeIV oxidation state enables redox chemistry to be performed on the naturally coinage-metal-deficient phases CeM1–xSO (M = Cu, Ag). A metastable black compound with the PbFCl structure type (space group P4/nmm: a = 3.8396(1) Å, c = 6.607(4) Å, V = 97.40(6) Å3) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the high-resolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A straw-colored compound with the filled PbFCl (i.e., ZrSiCuAs- or HfCuSi2-type) structure (space group P4/nmm: a = 3.98171(1) Å, c = 8.70913(5) Å, V = 138.075(1) Å3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAg0.8SO or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce4+ compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce4+ in the presence of sulfide (S2–). Comparison of the behavior of CeCu0.8SO with that of CeAg0.8SO reveals much slower reaction kinetics associated with the Cu1–xS layers, and this enables intermediate CeCu1–xLixSO phases to be isolated.Synthesis, structure, and properties of the layered oxide chalcogenides Sr2CuO2Cu2S2 and Sr2CuO2Cu2Se2
Inorganic Chemistry American Chemical Society 57:24 (2018) 15379-15388
Abstract:
The structures of two new oxide chalcogenide phases, Sr2CuO2Cu2S2 and Sr2CuO2Cu2Se2, are reported, both of which contain infinite CuO2 planes containing Cu2+ and which have Cu+ ions in the sulfide or selenide layers. Powder neutron diffraction measurements show that Sr2CuO2Cu2Se2 exhibits long-range magnetic ordering with a magnetic structure based on antiferromagnetic interactions between nearest-neighbor Cu2+ ions, leading to a √2a × √2a × 2c expansion of the nuclear cell. The ordered moment of 0.39(6) μB on the Cu2+ ions at 1.7 K is consistent with the value predicted by density functional theory calculations. The compounds are structurally related to the cuprate superconductors and may also be considered as analogues of the parent phases of this class of superconductor such as Sr2CuO2Cl2 or La2CuO4. In the present case, however, the top of the chalcogenide-based valence band is very close to the vacant Cu2+ 3d states of the conduction band, leading to relatively high measured conductivity.Complex magnetic ordering in the oxide selenide Sr2Fe3Se2O3
Inorganic Chemistry American Chemical Society 57:16 (2018) 10312-10322