Theory of Enhanced Interlayer Tunneling in Optically Driven High-T_{c} Superconductors.
Physical review letters 117:22 (2016) 227001
Abstract:
Motivated by recent pump-probe experiments indicating enhanced coherent c-axis transport in underdoped YBCO, we study Josephson junctions periodically driven by optical pulses. We propose a mechanism for this observation by demonstrating that a parametrically driven Josephson junction shows an enhanced imaginary part of the low-frequency conductivity when the driving frequency is above the plasma frequency, implying an effectively enhanced Josephson coupling. We generalize this analysis to a bilayer system of Josephson junctions modeling YBCO. Again, the Josephson coupling is enhanced when the pump frequency is blue detuned to either of the two plasma frequencies of the material. We show that the emergent driven state is a genuine, nonequilibrium superconducting state, in which equilibrium relations between the Josephson coupling, current fluctuations, and the critical current no longer hold.An effective magnetic field from optically driven phonons
Nature Physics Springer Nature 13:2 (2016) 132-136
Abstract:
Light fields at terahertz and mid-infrared frequencies allow for the direct excitation of collective modes in condensed matter, which can be driven to large amplitudes. For example, excitation of the crystal lattice has been shown to stimulate insulator-metal transitions, melt magnetic order or enhance superconductivity. Here, we generalize these ideas and explore the simultaneous excitation of more than one lattice mode, which are driven with controlled relative phases. This nonlinear mode mixing drives rotations as well as displacements of the crystal-field atoms, mimicking the application of a magnetic field and resulting in the excitation of spin precession in the rare-earth orthoferrite ErFeO 3. Coherent control of lattice rotations may become applicable to other interesting problems in materials research-for example, as a way to affect the topology of electronic phases.Nonlinear light–matter interaction at terahertz frequencies
Advances in Optics and Photonics Optica Publishing Group 8:3 (2016) 401
Electronic-structural dynamics in graphene.
Structural dynamics (Melville, N.Y.) 3:5 (2016) 051301
Abstract:
We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared ([Formula: see text]), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies ([Formula: see text]), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene ([Formula: see text]), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.Parametric amplification of a superconducting plasma wave
Nature Physics Nature Publishing Group 12 (2016) 1012-1016