Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Andrea Cavalleri

Professor of Physics

Sub department

  • Atomic and Laser Physics
andrea.cavalleri@physics.ox.ac.uk
Telephone: 01865 (2)72365
Clarendon Laboratory, room 316.3
  • About
  • Publications

Redistribution of phase fluctuations in a periodically driven cuprate superconductor

Physical Review B American Physical Society (APS) 91:10 (2015) 104507

Authors:

R Höppner, B Zhu, T Rexin, A Cavalleri, L Mathey
More details from the publisher

Phonon-pump extreme-ultraviolet-photoemission probe in graphene: anomalous heating of Dirac carriers by lattice deformation.

Physical review letters 114:12 (2015) 125503

Authors:

Isabella Gierz, Matteo Mitrano, Hubertus Bromberger, Cephise Cacho, Richard Chapman, Emma Springate, Stefan Link, Ulrich Starke, Burkhard Sachs, Martin Eckstein, Tim O Wehling, Mikhail I Katsnelson, Alexander Lichtenstein, Andrea Cavalleri

Abstract:

We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E_{1u} lattice vibration at 6.3  μm. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme-ultraviolet (XUV) pulses, we measure the response of the Dirac electrons near the K point. We observe that lattice modulation causes anomalous carrier dynamics, with the Dirac electrons reaching lower peak temperatures and relaxing at faster rate compared to when the excitation is applied away from the phonon resonance or in monolayer samples. Frozen phonon calculations predict dramatic band structure changes when the E_{1u} vibration is driven, which we use to explain the anomalous dynamics observed in the experiment.
More details from the publisher
More details
More details

Publisher's Note: Two distinct kinetic regimes for the relaxation of light-induced superconductivity in La1.675Eu0.2Sr0.125CuO4 [Phys. Rev. B 91, 020505(R) (2015)]

Physical Review B American Physical Society (APS) 91:5 (2015) 059901

Authors:

CR Hunt, D Nicoletti, S Kaiser, T Takayama, H Takagi, A Cavalleri
More details from the publisher

Mode-selective control of the crystal lattice.

Accounts of chemical research 48:2 (2015) 380-387

Authors:

M Först, R Mankowsky, A Cavalleri

Abstract:

CONSPECTUS: Driving phase changes by selective optical excitation of specific vibrational modes in molecular and condensed phase systems has long been a grand goal for laser science. However, phase control has to date primarily been achieved by using coherent light fields generated by femtosecond pulsed lasers at near-infrared or visible wavelengths. This field is now being advanced by progress in generating intense femtosecond pulses in the mid-infrared, which can be tuned into resonance with infrared-active crystal lattice modes of a solid. Selective vibrational excitation is particularly interesting in complex oxides with strong electronic correlations, where even subtle modulations of the crystallographic structure can lead to colossal changes of the electronic and magnetic properties. In this Account, we summarize recent efforts to control the collective phase state in solids through mode-selective lattice excitation. The key aspect of the underlying physics is the nonlinear coupling of the resonantly driven phonon to other (Raman-active) modes due to lattice anharmonicities, theoretically discussed as ionic Raman scattering in the 1970s. Such nonlinear phononic excitation leads to rectification of a directly excited infrared-active mode and to a net displacement of the crystal along the coordinate of all anharmonically coupled modes. We present the theoretical basis and the experimental demonstration of this phenomenon, using femtosecond optical spectroscopy and ultrafast X-ray diffraction at a free electron laser. The observed nonlinear lattice dynamics is shown to drive electronic and magnetic phase transitions in many complex oxides, including insulator-metal transitions, charge/orbital order melting and magnetic switching in manganites. Furthermore, we show that the selective vibrational excitation can drive high-TC cuprates into a transient structure with enhanced superconductivity. The combination of nonlinear phononics with ultrafast crystallography at X-ray free electron lasers may provide new design rules for the development of materials that exhibit these exotic behaviors also at equilibrium.
More details from the publisher
More details
More details

Two distinct kinetic regimes for the relaxation of light-induced superconductivity in La1.675Eu0.2Sr0.125CuO4

Physical Review B American Physical Society (APS) 91:2 (2015) 020505

Authors:

CR Hunt, D Nicoletti, S Kaiser, T Takayama, H Takagi, A Cavalleri
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet