The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History
Astrophysical Journal American Astronimical Society 236:2 (2018) 33
Abstract:
We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts ($0.2\lt z\lt 15$) and stellar masses $[\mathrm{log}(M/{M}_{\odot })\geqslant 6]$. Our model follows observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the beagle tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z gsim 6, and 10s at z gsim 10 at ${m}_{{AB}}\lesssim 30$ (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z gsim 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions
ArXiv 1709.03503 (2017)
Abstract:
Measurements of the galaxy UV luminosity function at z>6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z~6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, $\xi_\text{ion}^\star$, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z>6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z>6. We use the new-generation Beagle tool to model the UV-to-optical photometry and UV/optical emission lines of these Local 'analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, $\xi_\text{ion}^\star$, based on the equivalent width of the bright $[\text{OIII}] \lambda 4959,5007$ doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate $\xi_\text{ion}^\star$ from future direct measurements of the $[\text{OIII}] \lambda 4959,5007$ line using JWST/NIRSpec (out to z~9.5), and by exploiting the contamination by $\text{H}\beta + [\text{OIII}] \lambda 4959,5007$ of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.Ultraviolet spectra of extreme nearby star-forming regions --- approaching a local reference sample for JWST
ArXiv 1706.00881 (2017)
Abstract:
Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below $Z_\odot/2$. Such tests are particularly important for interpreting the surprising high-ionization UV line emission detected at $z>6$ in recent years. We present HST/COS ultraviolet spectra of ten nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance ($7.8<12+\log\mathrm{O/H}<8.5$) and present uniformly large specific star formation rates (sSFR $\sim 10^2$ $\mathrm{Gyr}^{-1}$). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at $z\sim 6-7$. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below $12+\log\mathrm{O/H}\lesssim 8.0$ ($Z/Z_\odot \lesssim 1/5$) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the $\mathrm{He^+}$-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.Modelling and interpreting spectral energy distributions of galaxies with BEAGLE
ArXiv 1603.03037 (2016)
Abstract:
We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modeling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broadband SEDs of a published sample of ${\sim}10^4$ galaxies at redshifts $0.1 \lesssim z\lesssim8$. We find that the constraints derived on photometric redshifts using this multi-purpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the Python extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.Effect of primordial non-Gaussianities on the far-UV luminosity function of high-redshift galaxies: implications for cosmic reionization
ArXiv 1410.7768 (2014)