Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Rendering of ELT instruments on ELT Nasmyth Platform (credit ESO/L. Calçada)

Rendering of ELT instruments on ELT Nasmyth Platform

Credit: credit ESO/L. Calçada

Dr Fraser Clarke

Senior Programme Manager for Space Instrumentation

Research theme

  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Space instrumentation
fraser.clarke@physics.ox.ac.uk
  • About
  • Publications

Opto-mechanical designs for the HARMONI Adaptive Optics systems

(2018)

Authors:

Kjetil Dohlen, Timothy Morris, Javier Piqueras Lopez, Ariadna Calcines-Rosario, Anne Costille, Marc Dubbeldam, Kacem El Hadi, Thierry Fusco, Marc Llored, Benoit Neichel, Sandrine Pascal, Jean-Francois Sauvage, Pascal Vola, Fraser Clarke, Hermine Schnetler, Ian Bryson, Niranjan Thatte
More details from the publisher

Corrigendum to: Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700)

Open Astronomy (2018)

Authors:

AE Lynas-Gray, D Bogensberger, FRASER Clarke

Abstract:

© 2018 D. Bogensberger, published by De Gruyter. "Eclipse times for HS 0705+6700 which Bogensberger et al. (2017, Open Astronomy 26, 134, their table 2) list are exposure-start times; times of mid-exposure are obtained by adding thirty seconds (0.00035 days) to each entry. Third body orbital parameterswhich Bogensberger et al. deduce are superseded by the analysis of more recent data, to be the subject of a future publication".
More details from the publisher
More details

Further evidence of a brown dwarf orbiting the post-common envelope eclipsing binary V470 cam (HS 0705+6700)

Open Astronomy De Gruyter 26:1 (2017) 134-138

Authors:

D Bogensberger, Fraser Clarke, Anthony E Lynas-Gray

Abstract:

Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25thto 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40) M, an elliptical orbit with an eccentricity of 0.376(98) and an orbital period of 11.77(67) years about the binary centre-of-mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.
More details from the publisher
Details from ORA
More details

CASTAway: An asteroid main belt tour and survey.

Advances in Space Research Elsevier 62:8 (2017) 1998-2025

Authors:

Neil E Bowles, C Snodgrass, JP Sanchez, Jessica A Arnold, P Eccleston, T Andert, A Probst, G Naletto, AC Vandaele, de de Leon, A Nathues, IR Thomas, N Thomas, L Jorda, V da Deppo, H Haack, SF Green, B Carry, Kerri L Donaldson Hanna, J Leif Jorgensen, A Kereszturi, FE DeMeo, JK Davies, Fraser Clarke, K Kinch, A Guilbert-Lepoutre, J Agarwal, AS Rivkin, P Pravec, S Fornasier, M Gravnik, RH Jones, N Murdoch, KH Joy, Matthias Tecza, Jennifer M Barnes, J Licandro, BT Greenhagen, Simon B Calcutt, Charlotte M Marriner, Tristram J Warren, I Tosh

Abstract:

CASTAway is a mission concept to explore our Solar System’s main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space-based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10 – 20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R = 30 – 100) spectrometer and visible context imager, a thermal (e.g. 6 – 16 μm) imager for use during the flybys, and modified star tracker cameras to detect small (~10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, whilst delivering a significant increase in knowledge of our Solar System.
More details from the publisher
Details from ORA
More details

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders

Instituto de Astrofisica de Canarias (2017)

Authors:

Noah Schwartz, Jean-Franà ois Sauvage, Carlos Correia, Cyril Petit, Fernando Quiros-Pacheco, Thierry Fusco, Kjetil Dohlen, Kacem El Hadi, Niranjan Thatte, Fraser Clarke, Jà rome Paufique, Joel Vernet
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet