Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Rendering of ELT instruments on ELT Nasmyth Platform (credit ESO/L. Calçada)

Rendering of ELT instruments on ELT Nasmyth Platform

Credit: credit ESO/L. Calçada

Dr Fraser Clarke

Senior Programme Manager for Space Instrumentation

Research theme

  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Space instrumentation
fraser.clarke@physics.ox.ac.uk
  • About
  • Publications

Design of the HARMONI pyramid WFS module

AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes (2019)

Authors:

N Schwartz, JF Sauvage, E Renault, C Correia, B Neichel, T Fusco, K Dohlen, K El Hadi, C Petit, E Choquet, V Chambouleyron, J Paufique, F Clarke, N Thatte, I Bryson

Abstract:

© 2019 AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes. All rights reserved. Current designs for all three extremely large telescopes show the overwhelming adoption of the pyramid wavefront sensor (P-WFS) as the WFS of choice for adaptive optics (AO) systems sensing on natural guide stars (NGS) or extended objects. The key advantages of the P-WFS over the Shack-Hartmann are known and are mainly provided by the improved sensitivity (fainter NGS) and reduced sensitivity to spatial aliasing. However, robustness and tolerances of the P-WFS for the ELTs are not currently well understood. In this paper, we present simulation results for the single-conjugate AO mode of HARMONI, a visible and near-infrared integral field spectrograph for the European Extremely Large Telescope. We first explore the wavefront sensing issues related to the telescope itself; namely the island effect (i.e. differential piston) and M1 segments phasing errors. We present mitigation strategies to the island effect and their performance. We then focus on some performance optimisation aspects of the AO design to explore the impact of the RTC latency and the optical gain issues, which will in particular affect the high-contrast mode of HARMONI. Finally, we investigate the influence of the quality of glass pyramid prism itself, and of optical aberrations on the final AO performance. By relaxing the tolerances on the fabrication of the prism, we are able to reduce hardware costs and simplify integration. We show the importance of calibration (i.e. updating the control matrix) to capture any displacement of the telescope pupil and rotation of the support structure for M4. We also show the importance of the number of pixels used for wavefront sensing to relax tolerances of the pyramid prism. Finally, we present a detailed optical design of the pyramid prism, central element of the P-WFS.
Details from ArXiV

Near infrared throughput and stray light measurements of diffraction gratings for ELT-HARMONI

Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 10706 (2018)

Authors:

M Rodrigues, John Capone, F Clarke, A Earle, T Foster, J Lynn, K Obrien, M Tecza, NA Thatte, I Tosh, A Hidalgo Valadez, IJ Lewis
More details from the publisher
Details from ORA
More details

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders

(2018)

Authors:

Noah Schwartz, Jean-François Sauvage, Carlos Correia, Cyril Petit, Fernando Quiros-Pacheco, Thierry Fusco, Kjetil Dohlen, Kacem El Hadi, Niranjan Thatte, Fraser Clarke, Jérome Paufique, Joel Vernet
More details from the publisher

ELT HARMONI: Image Slicer Preliminary Design

(2018)

Authors:

Florence Laurent, Didier Boudon, Johan Kosmalski, Magali Loupias, Guillaume Raffault, Alban Remillieux, Niranjan Thatte, Ian Bryson, Hermine Schnetler, Fraser Clarke, Matthias Tecza
More details from the publisher

Opto-mechanical designs for the HARMONI adaptive optics systems

Proceedings of SPIE SPIE 10703 (2018)

Authors:

K Dohlen, TJ Morris, J Piqueras Lopez, A Calcines-Rosario, A Costille, M Dubbeldam, K El Hadi, T Fusco, M Llored, B Neichel, S Pascal, J-F Sauvage, P Vola, Fraser Clarke, H Schnetler, I Bryson, Niranjan Thatte

Abstract:

HARMONI is a visible and near-infrared integral field spectrograph equipped with two complementary adaptive optics systems, fully integrated within the instrument. A Single Conjugate AO (SCAO) system offers high performance for a limited sky coverage and a Laser Tomographic AO (LTAO) system provides AO correction with a very high sky-coverage. While the deformable mirror performing real-time correction of the atmospheric disturbances is located within the telescope itself, the instrument contains a suite of state-of-the-art and innovative wavefront sensor systems. Laser guide star sensors (LGSS) are located at the entrance of the instrument and fed by a dichroic beam splitter, while the various natural guide star sensors for LTAO and SCAO are located close to the science focal plane. We present opto-mechanical architecture and design at PDR level for these wavefront sensor systems.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet