Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum oscillations

Amalia Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum matter in high magnetic fields
amalia.coldea@physics.ox.ac.uk
Telephone: 01865 (2)82196
Clarendon Laboratory, room 251,265,264,166
orcid.org/0000-0002-6732-5964
  • About
  • Research
  • Teaching
  • Selected invited lectures
  • Prizes, awards and recognition
  • Publications

Unveiling the quasiparticle behaviour in the pressure-induced high-$T_c$ phase of an iron-chalcogenide superconductor

(2024)

Authors:

Z Zajicek, P Reiss, D Graf, JCA Prentice, Y Sadki, AA Haghighirad, AI Coldea
More details from the publisher
Details from ArXiV

Unveiling the quasiparticle behaviour in the pressure-induced high-Tc phase of an iron-chalcogenide superconductor

npj Quantum Materials Springer Nature 9:1 (2024) 52

Authors:

Zachary Zajicek, Pascal Reiss, David Graf, Joseph Prentice, Ylias Sadki, Amir Haghighirad, Amalia Coldea

Abstract:

Superconductivity of iron chalocogenides is strongly enhanced under applied pressure yet its underlying pairing mechanism remains elusive. Here, we present a quantum oscillations study up to 45 T in the high-Tc phase of tetragonal FeSe0.82S0.18 up to 22 kbar. Under applied pressure, the quasi-two-dimensional multi-band Fermi surface expands and the effective masses remain large, whereas the superconductivity displays a threefold enhancement. Comparing with chemical pressure tuning of FeSe1−xSx, the Fermi surface expands in a similar manner but the effective masses and Tc are suppressed. These differences may be attributed to the changes in the density of states influenced by the chalcogen height, which could promote stronger spin fluctuations pairing under pressure. Furthermore, our study also reveals unusual scattering and broadening of superconducting transitions in the high-pressure phase, indicating the presence of a complex pairing mechanism.
More details from the publisher
Details from ORA
More details

Unveiling the quasiparticle behaviour in the pressure-induced high- T c phase of an iron-chalcogenide superconductor

npj Quantum Materials Nature Research 9:1 (2024) 52

Authors:

Z Zajicek, P Reiss, D Graf, JCA Prentice, Y Sadki, AA Haghighirad, AI Coldea

Abstract:

Superconductivity of iron chalocogenides is strongly enhanced under applied pressure yet its underlying pairing mechanism remains elusive. Here, we present a quantum oscillations study up to 45 T in the high-Tc phase of tetragonal FeSe0.82S0.18 up to 22 kbar. Under applied pressure, the quasi-two-dimensional multi-band Fermi surface expands and the effective masses remain large, whereas the superconductivity displays a threefold enhancement. Comparing with chemical pressure tuning of FeSe1−xSx, the Fermi surface expands in a similar manner but the effective masses and Tc are suppressed. These differences may be attributed to the changes in the density of states influenced by the chalcogen height, which could promote stronger spin fluctuations pairing under pressure. Furthermore, our study also reveals unusual scattering and broadening of superconducting transitions in the high-pressure phase, indicating the presence of a complex pairing mechanism.
More details from the publisher
Details from ORA

Resurgence of superconductivity and the role of $d_{xy}$ hole band in FeSe$_{1-x}$Te$_x$

(2024)

Authors:

Archie B Morfoot, Timur K Kim, Matthew D Watson, Amir A Haghighirad, Shiv J Singh, Nick Bultinck, Amalia I Coldea
More details from the publisher
Details from ArXiV

Collapse of Metallicity and High-Tc Superconductivity in the High-Pressure phase of FeSe0.89S0.11

University of Oxford (2024)

Authors:

Pascal Reiss, Amalia Coldea

Abstract:

This dataset was created by performing temperature dependendent resistivity and tunnel diode oscillator studies of different single crystals of FeSe0.89S0.11. The experiment were performed using diamond anvil cells and low temperature cryostats both in Oxford and at the HMFL in Nijmegen. The data are related to the manuscript with the same title: Collapse of Metallicity and High-Tc Superconductivity in the High-Pressure phase of FeSe0.89S0.11 (https://arxiv.org/abs/2212.06824) to appear in npj Quantum Materials.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet