Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum oscillations

Amalia Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum matter in high magnetic fields
amalia.coldea@physics.ox.ac.uk
Telephone: 01865 (2)82196
Clarendon Laboratory, room 251,265,264,166
orcid.org/0000-0002-6732-5964
  • About
  • Research
  • Teaching
  • Selected invited lectures
  • Prizes, awards and recognition
  • Publications

Recent high-magnetic-field studies of unusual groundstates in quasi-two-dimensional crystalline organic metals and superconductors

(2005)

Authors:

J Singleton, N Harrison, R McDonald, PA Goddard, A Bangura, A Coldea, LK Montgomery, X Chi
More details from the publisher

Electron paramagnetic resonance studies of the high-spin molecule Cr10 (OMe) 20 (O2 CCMe3) 10

Applied Physics Letters 86:3 (2005) 1-3

Authors:

S Sharmin, A Ardavan, SJ Blundell, AI Coldea, EJL Mcinnes, D Low

Abstract:

We report millimeter-wave magneto-optical measurements on the high-spin molecule, Cr10 (OMe) 20 (O2 CCMe3) 10. The dependence of the electron paramagnetic resonance as a function of orientation and temperature demonstrates that this compound behaves as a single molecule magnet, and exhibits one of the smallest zero-field splittings (D=-0.045±0.004 K) yet reported for such a system. © 2005 American Institute of Physics.
More details from the publisher

Electron paramagnetic resonance studies of the high-spin molecule Cr10(OMe)20(O2CCMe3)10 -: art. no. 03250

APPLIED PHYSICS LETTERS 86:3 (2005) ARTN 032507

Authors:

S Sharmin, A Ardavan, SJ Blundell, AI Coldea, EJL McInnes, D Low
More details from the publisher

Fermiology of new charge-transfer salts, β″-(BEDT-TTF) 4[(H3O)M(C2O4)3]-solvent where M = Ga, Cr and Fe

Journal De Physique. IV : JP 114 (2004) 205-209

Authors:

AI Coldea, AF Bangura, A Ardavan, J Singleton, A Akutsu-Sato, H Akutsu, SS Turner, P Day

Abstract:

We report high-field magnetotransport measurements on β″-(BEDT- TTF)4[(H3O)M(C2O4) 3]· solvent, where M=Ga3+, Cr3+ and Fe3+ and solvent=C5H5N. In spite of their differing transition metal-ions, M, the three compounds exhibit similar magnetic quantum oscillation spectra superimposed on a positive magnetoresistance. At least four independent quantum oscillation frequencies have been identified, corresponding to two different hole and electron pockets of the Fermi surface which follow the rules of a compensated metal. Observation of the small pockets could be the result of the Fermi surface reconstruction induced by a possible density wave. The effective masses are very similar for different samples and for different pockets range between meff ≈ 0.5-1.1 me whereas the Dingle temperatures varies between TD ≈ 1.4-4 K. At low temperature, the longitudinal magnetoresistance violates Kohler's rule, suggesting that the interlayer transport in these quasi-2D systems cannot be related to a single scattering time and that the disorder plays an important role. © EDP Sciences.
More details from the publisher

The effect of magnetic ions and disorder on superconducting β″-(BEDT-TTF)4[(H3O)M(C2O 4)3]· C6H5NO2 salts, where M = Ga and Cr

Journal De Physique. IV : JP 114 (2004) 285-287

Authors:

AF Bangura, AI Coldea, A Ardavan, J Singleton, A Akutsu-Sato, H Akutsu, P Day

Abstract:

We report magnetotransport measurements performed in magnetic fields of up to 33 T and at low temperatures (0.45 K
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet