Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum oscillations

Amalia Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum matter in high magnetic fields
amalia.coldea@physics.ox.ac.uk
Telephone: 01865 (2)82196
Clarendon Laboratory, room 251,265,264,166
orcid.org/0000-0002-6732-5964
  • About
  • Research
  • Teaching
  • Selected invited lectures
  • Prizes, awards and recognition
  • Publications

Crystal structure and magnetic properties of SrCaMnGaO5+δ

Journal of Solid State Chemistry 167:1 (2002) 188-195

Authors:

PD Battle, AMT Bell, SJ Blundell, AI Coldea, DJ Gallon, FL Pratt, MJ Rosseinsky, CA Steer

Abstract:

The room-temperature crystal structure of the brownmillerite SrCaMnGaO5+δ (δ = 0.035) has been refined from neutron powder diffraction data; space group Ima2, a = 15.7817(6), b = 5.4925(2), c = 5.3196(2) Å. Mn and Ga occupy 99.0(2)% of the 6- and 4-coordinate sites, respectively. A combination of magnetometry, neutron diffraction and μSR spectroscopy has shown that the compound orders magnetically at 180 K, and that the low-temperature phase has a G-type antiferromagnetic structure, with an ordered magnetic moment of 3.30(2) μB per Mn at 2 K. Displaced hysteresis loops provide evidence that the atomic moment has an additional, glassy component. Magnetometry shows that significant short-range magnetic interactions persist above 180 K, and μSR that the spin fluctuations are thermally activated in this temperature region. The compound is an electrical insulator which at 159 K shows an unusually large magnetoresistance of 85% in 6T, increasing to 90% in 13 T. © 2002 Elsevier Science (USA).
More details from the publisher
More details

Spin freezing and magnetic inhomogeneities in bilayer manganites

Physical Review Letters 89 (2001) 277601 4pp

Authors:

SJ Blundell, A I Coldea, C A Steer, J F Mitchell
More details from the publisher
More details
More details
Details from ArXiV

ChemInform Abstract: Chemically Induced Magnetism and Magnetoresistance in La0.8Sr1.2Mn0.6Rh0.4O4 .

ChemInform Wiley 32:46 (2001) no-no

Authors:

Peter D Battle, Anthony MT Bell, Stephen J Blundell, Amalia I Coldea, Edmund J Cussen, Georgina C Hardy, Ishbel M Marshall, Matthew J Rosseinsky, Christopher A Steer
More details from the publisher

Colossal magnetoresistance in the layered chromium sulfide Cr2S3-x (x=0.08)

Physical Review B - Condensed Matter and Materials Physics 64:13 (2001) 1324021-1324024

Authors:

P Vaqueiro, AV Powell, AI Coldea, CA Steer, IM Marshall, SJ Blundell, J Singleton, T Ohtani

Abstract:

We report structural, magnetic, and magnetotransport properties of the two-dimensional chromium sulfide Cr2S2.92, which contains both Cr3+ and Cr2+ ions. Below its magnetic-ordering temperature (TN=118 K), Cr2S2.92 exhibits a weak spontaneous magnetization with a maximum around 90 K and a value of 0.013(4) μB per Cr ion at 5 K. The resistivity and magnetoresistance exhibit pronounced local maxima around TN (MR=48% in a field of 14 T). The magnetotransport properties are discussed in terms of magnetic-polaron formation.
More details from the publisher
More details

Chemically induced magnetism and magnetoresistance in La(0.8)Sr(1.2)Mn(0.6)Rh(0.4)O(4).

J Am Chem Soc 123:31 (2001) 7610-7615

Authors:

PD Battle, AM Bell, SJ Blundell, AI Coldea, EJ Cussen, GC Hardy, IM Marshall, MJ Rosseinsky, CA Steer

Abstract:

It is shown by magnetometry and microSR spectroscopy that short-range magnetic interactions between the Mn cations in the nonmetallic K(2)NiF(4)-like phase La(0.8)Sr(1.2)Mn(0.6)Rh(0.4)O(4) become significant below approximately 200 K. Negative magnetoresistance (rho/rho(0) approximately 0.5 in 14 T at 108 K) is apparent below this temperature. Neutron diffraction has shown that an applied magnetic field of 5 T is sufficient to induce saturated (3.38(7)mu(B) per Mn) long-range ferromagnetic ordering of the atomic moments at 2 K, and that the induced ordering persists up to a temperature of 50 K in 5 T. Spin glass behavior is observed below 20 K in the absence of an applied field. The induced magnetic ordering is attributed to the subtle changes in band structure brought about by the external field, and to the controlling influence of Rh(3+) over the relative strength of competing magnetic exchange interactions.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet