Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
inelastic neutron scattering spectra of quantum magnets

Prof Radu Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum magnetism and quantum phase transitions
Radu.Coldea@physics.ox.ac.uk
Telephone: 01865 (2)72335
Clarendon Laboratory, room 111.1
  • About
  • Publications

Single crystal growth from separated educts and its application to lithium transition-metal oxides

(2016)

Authors:

F Freund, SC Williams, RD Johnson, R Coldea, P Gegenwart, A Jesche
More details from the publisher

Incommensurate Counterrotating Magnetic Order Stabilized by Kitaev Interactions in the Layered Honeycomb ${\alpha}$-Li$_2$IrO$_3$

(2016)

Authors:

SC Williams, RD Johnson, F Freund, Sungkyun Choi, A Jesche, I Kimchi, S Manni, A Bombardi, P Manuel, P Gegenwart, R Coldea
More details from the publisher

Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb alpha-Li2IrO3

University of Oxford (2016)

Authors:

Stephanie Williams, Roger Johnson, Radu Coldea, Itamar Kimchi

Abstract:

This dataset contains plain text files containing the data presented in Figures 1, 2, 3, and 4 of the corresponding manuscript published in Physical Review B. See readme.txt.
More details from the publisher
Details from ORA

Single crystal growth from separated educts and its application to lithium transition-metal oxides: Data archive

University of Oxford (2016)

Authors:

Stephanie Williams, Roger Johnson, Radu Coldea

Abstract:

the deposited package contains single-crystal x-ray diffraction data from which the crystal structure of alpha-Li2IrO3 was refined.
More details from the publisher
Details from ORA

Spin dynamics of counterrotating Kitaev spirals via duality

Physical Review B American Physical Society 94:20 (2016) 201110(R)

Authors:

I Kimchi, Radu Coldea

Abstract:

Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spirals on neighboring sublattices are counter-rotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: the Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet