Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore $Yb_{2}Ti_{2}O_{7}$ in a Magnetic Field
Abstract:
The frustrated pyrochlore magnet $Yb_{2}Ti_{2}O_{7}$ has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.Probing $\alpha$-RuCl$_3$ Beyond Magnetic Order: Effects of Temperature and Magnetic Field
Topological triplon modes and bound states in a Shastry–Sutherland magnet
Abstract:
The twin discoveries of the quantum Hall effect1, in the 1980s, and of topological band insulators2, in the 2000s, were landmarks in physics that enriched our view of the electronic properties of solids. In a nutshell, these discoveries have tau ght us that quantum mechanical wavefunctions in crystalline solids may carry nontrivial topological invariants which have ramifications for the observable physics. One of the side effects of the recent topological insulator revolution has been that such physics is much more widespread than was appreciated ten years ago. For example, while topological insulators were originally studied in the context of electron wavefunctions, recent work has initiated a hunt for topological insulators in bosonic systems: in photonic crystals3-6, in the vibrational modes of crystals7, and in the excitations of ordered magnets8. Using inelastic neutron scattering along with theoretical calculations, we demonstrate that, in a weak magnetic field, the dimerized quantum magnet SrCu 2 (BO 3 ) 2 is a bosonic topological insulator with topologically protected chiral edge modes of triplon excitations.Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb$_2$Ti$_2$O$_7$ in Magnetic Field
Magnetic field dependence of excitations near spin-orbital quantum criticality
Abstract:
The spinel FeSc2S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.