Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
inelastic neutron scattering spectra of quantum magnets

Prof Radu Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum magnetism and quantum phase transitions
Radu.Coldea@physics.ox.ac.uk
Telephone: 01865 (2)72335
Clarendon Laboratory, room 111.1
  • About
  • Publications

Magnetic order and spin-waves in the quasi-1D S=1/2 antiferromagnet ${\bf BaCu_{2}Si_{2}O_{7}}$

ArXiv cond-mat/0012452 (2000)

Authors:

M Kenzelmann, A Zheludev, S Raymond, E Ressouche, T Masuda, P Böni, K Kakurai, I Tsukada, K Uchinokura, R Coldea

Abstract:

Elastic and inelastic neutron scattering were used to study the ordered phase of the quasi-one-dimensional spin-1/2 antiferromagnet ${\rm BaCu_{2}Si_{2}O_{7}}$. The previously proposed model for the low-temperature magnetic structure was confirmed. Spin wave dispersion along several reciprocal-space directions was measured and inter-chain, as well as in-chain exchange constants were determined. A small gap in the spin wave spectrum was observed and attributed to magnetic anisotropy effects. The results are discussed in comparison with existing theories for weakly-coupled quantum spin chain antiferromagnets.
Details from ArXiV
More details from the publisher

ChemInform Abstract: Onset of Antiferromagnetism in Heavy‐Fermion Metals

ChemInform Wiley 31:50 (2000) no-no

Authors:

A Schroeder, G Aeppli, R Coldea, M Adams, O Stockert, H von Loehneysen, E Bucher, R Ramazashvili, P Coleman
More details from the publisher

Multi-particle States in Spin-1 Chain System CsNiCl3

(2000)

Authors:

M Kenzelmann, RA Cowley, WJL Buyers, R Coldea, JS Gardner, M Enderle, DF McMorrow, SM Bennington
More details from the publisher

Onset of antiferromagnetism in heavy fermion metals

(2000)

Authors:

A Schroder, G Aeppli, R Coldea, M Adams, O Stockert, HV Lohneysen, E Bucher, R Ramazashvili, P Coleman
More details from the publisher

Onset of antiferromagnetism in heavy-fermion metals.

Nature 407:6802 (2000) 351-355

Authors:

A Schroder, G Aeppli, R Coldea, M Adams, O Stockert, v. Lohneysen H, E Bucher, R Ramazashvili, P Coleman

Abstract:

There are two main theoretical descriptions of antiferromagnets. The first arises from atomic physics, which predicts that atoms with unpaired electrons develop magnetic moments. In a solid, the coupling between moments on nearby ions then yields antiferromagnetic order at low temperatures. The second description, based on the physics of electron fluids or 'Fermi liquids' states that Coulomb interactions can drive the fluid to adopt a more stable configuration by developing a spin density wave. It is at present unknown which view is appropriate at a 'quantum critical point' where the antiferromagnetic transition temperature vanishes. Here we report neutron scattering and bulk magnetometry measurements of the metal CeCu(6-x)Au(x), which allow us to discriminate between the two models. We find evidence for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration (x(c) = 0.1), corresponding to a magnetic ordering temperature of zero. This contribution implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet