Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
inelastic neutron scattering spectra of quantum magnets

Prof Radu Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum magnetism and quantum phase transitions
Radu.Coldea@physics.ox.ac.uk
Telephone: 01865 (2)72335
Clarendon Laboratory, room 111.1
  • About
  • Publications

The phase diagram of a quasi-1D S = ½ Heisenberg antiferromagnet

Journal of Magnetism and Magnetic Materials Elsevier 177 (1998) 659-660

Authors:

R Coldea, DA Tennant, RA Cowley, DF McMorrow, B Dorner, Z Tylczynski
More details from the publisher
More details

The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field

(1997)

Authors:

R Coldea, DA Tennant, RA Cowley, DF McMorrow, B Dorner, Z Tylczynski
More details from the publisher

The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field

ArXiv cond-mat/9705226 (1997)

Authors:

R Coldea, DA Tennant, RA Cowley, DF McMorrow, B Dorner, Z Tylczynski

Abstract:

Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering. Fields greater than Bc =1.66 T, but less than the field (~8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave theory.
Details from ArXiV
More details from the publisher
More details

Neutron scattering study of the magnetic structure of

Journal of Physics Condensed Matter IOP Publishing 8:40 (1996) 7473

Authors:

R Coldea, DA Tennant, RA Cowley, DF McMorrow, B Dorner, Z Tylczynski
More details from the publisher
More details

Direct Observation of Charge Order in Triangular Metallic AgNiO2 by Single-Crystal Resonant X-Ray Scattering

PHYSICAL REVIEW LETTERS AMER PHYSICAL SOC 106 15

Authors:

GL Pascut, R Coldea, PG Radaelli, A Bombardi, G Beutier, II Mazin, MD Johannes, M Jansen

Abstract:

We report resonant x-ray scattering measurements on a single crystal of the orbitally degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below T-S = 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K edge. The empirically extracted K-edge shift between the crystallographically distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of similar to 1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.
More details from the publisher
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet