Neutron scattering study of the magnetic structure of
Journal of Physics Condensed Matter IOP Publishing 8:40 (1996) 7473
Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition
Communications Physics Nature Research (part of Springer Nature)
Compass-model physics on the hyperhoneycomb lattice in the extreme spin-orbit regime
Nature Communications Nature Research (part of Springer Nature)
Abstract:
The physics of spin-orbit entangled magnetic moments of 4d and 5d transition metal ions on a honeycomb lattice has been much explored in search for unconventional magnetic orders or quantum spin liquids expected for compass spin models, where different bonds in the lattice favour different orientations for the magnetic moments. Realizing such physics with rare-earth ions is a promising route to achieve exotic ground states in the extreme spin orbit limit, however this regime has remained experimentally largely unexplored due to major challenges in materials synthesis. Here we report successful synthesis of powders and single crystals of β-Na2PrO3, with Pr^{4+} j_eff = 1/2 magnetic moments arranged on a hyperhoneycomb lattice with the same threefold coordination as the planar honeycomb. We find a strongly noncollinear magnetic order with highly dispersive gapped excitations that we argue arise from frustration between bond-dependent, anisotropic off-diagonal exchanges, a compass quantum spin model not explored experimentally so far. Our results show that rare-earth ions on threefold coordinated lattices offer a platform for the exploration of quantum compass spin models in the extreme spin orbit regime, with qualitatively distinct physics from that of 4d and 5d Kitaev materials.Direct Observation of Charge Order in Triangular Metallic AgNiO2 by Single-Crystal Resonant X-Ray Scattering
PHYSICAL REVIEW LETTERS AMER PHYSICAL SOC 106 15
Abstract:
We report resonant x-ray scattering measurements on a single crystal of the orbitally degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below T-S = 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K edge. The empirically extracted K-edge shift between the crystallographically distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of similar to 1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.Glide symmetry breaking and Ising criticality in the quasi-1D magnet CoNb2O6
Proceedings of the National Academy of Sciences of USA National Academy of Sciences