Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Greg Colyer

Visitor

Research theme

  • Climate physics
  • Exoplanets and planetary physics
  • Plasma physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
Telephone: 01865 (2)82436
Atmospheric Physics Clarendon Laboratory, room 209E
  • About
  • Publications

Gyrokinetic simulations of spherical tokamaks

Plasma Physics and Controlled Fusion 51:12 (2009)

Authors:

CM Roach, IG Abel, RJ Akers, W Arter, M Barnes, Y Camenen, FJ Casson, G Colyer, JW Connor, SC Cowley, D Dickinson, W Dorland, AR Field, W Guttenfelder, GW Hammett, RJ Hastie, E Highcock, NF Loureiro, AG Peeters, M Reshko, S Saarelma, AA Schekochihin, M Valovic, HR Wilson

Abstract:

This paper reviews transport and confinement in spherical tokamaks (STs) and our current physics understanding of this that is partly based on gyrokinetic simulations. Equilibrium flow shear plays an important role, and we show how this is consistently included in the gyrokinetic framework for flows that greatly exceed the diamagnetic velocity. The key geometry factors that influence the effectiveness of turbulence suppression by flow shear are discussed, and we show that toroidal equilibrium flow shear can sometimes entirely suppress ion scale turbulence in today's STs. Advanced nonlinear simulations of electron temperature gradient (ETG) driven turbulence, including kinetic ion physics, collisions and equilibrium flow shear, support the model that ETG turbulence can explain electron heat transport in many ST discharges. © 2009 IOP Publishing Ltd.
More details from the publisher
More details

Testing the Trapped Gyro-Landau Fluid Transport Model with Data from Tokamaks and Spherical Tori

Proc. 22nd IAEA FEC (2008)

Authors:

GM Staebler, G Colyer, S Kaye, JE Kinsey, RE Waltz

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet