Ultracold atoms carrying orbital angular momentum: Engineering topological phases in lattices
EPL (Europhysics Letters) IOP Publishing 145:3 (2024) 35001
Commensurate and incommensurate 1D interacting quantum systems.
Nature communications 15:1 (2024) 474
Abstract:
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes. Key to their great versatility as quantum simulators is the ability to use engineered light potentials at the microscopic level. Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms. Such incommensurate systems are analogous to doped insulating states that exhibit atom transport and compressibility. Initially, a commensurate system with unit filling and fixed atom number is prepared between two potential barriers. We deterministically create an incommensurate system by dynamically changing the position of the barriers such that the number of available lattice sites is reduced while retaining the atom number. Our systems are characterised by measuring the distribution of particles and holes as a function of the lattice filling, and interaction strength, and we probe the particle mobility by applying a bias potential. Our work provides the foundation for preparation of low-entropy states with controlled filling in optical-lattice experiments.Twenty-five years of analogue quantum simulation
Nature Reviews Physics Springer Nature 5:12 (2023) 702-703
Onset of Scrambling as a Dynamical Transition in Tunable-Range Quantum Circuits
PRX Quantum American Physical Society (APS) 4:3 (2023) 30325
Abstract:
In a fast-scrambling many-body quantum system, information is spread and entanglement is built up on a time scale that grows logarithmically with the system size. This is of fundamental interest in understanding the dynamics of many-body systems, as well as in efficiently producing entangled resource states and error-correcting codes. In this work, we identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity. In particular, we show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse around a critical point between two clearly defined regimes of different dynamical behavior. We study this transition analytically in a related long-range Brownian-circuit model and show how the transition can be mapped onto the statistical mechanics of a long-range Ising model in a particular region of parameter space. This mapping predicts mean-field critical exponents ν=-1/(1+sc), which are consistent with the critical exponents extracted from Clifford-circuit numerics. In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic sparse circuits that can be realized in experiments with neutral-atom arrays.Can multipartite entanglement be characterized by two-point connected correlation functions?
Journal of Physics A: Mathematical and Theoretical IOP Publishing 56:30 (2023) 305302