Optimisation of the WEAVE target assignment algorithm
Proceedings of SPIE - International Society for Optical Engineering Society of Photo-optical Instrumentation Engineers 12184 (2022)
Abstract:
WEAVE is the new wide-field spectroscopic facility for the prime focus of the William Herschel Telescope in La Palma, Spain. Its fibre positioner is essential for the accurate placement of the spectrograph’s ∼ 960-fibre multiplex. To maximise the assignment of its optical fibres, WEAVE uses a simulated annealing algorithm called Configure,1 which allocates the fibres to targets in the field of view. We have conducted an analysis of the algorithm’s behaviour using a subset of mid-tier WL2 fields, and adjusted the priority assignment algorithm to optimise the total fibres assigned per field, and the assignment of fibres to the higher priority science targets. The output distributions have been examined, to investigate the implications for the WEAVE science teams.Forecasts for WEAVE-QSO: 3D clustering of critical points with Lyman-alpha tomography
Monthly Notices of the Royal Astronomical Society Oxford University Press 514:1 (2022) 1359-1385
Abstract:
The upcoming WEAVE-QSO survey will target a high density of quasars over a large area, enabling the reconstruction of the 3D density field through Lyman-훼 tomography over unprecedented volumes smoothed on intermediate cosmological scales (≈ 16 Mpc/h). We produce mocks of the Lyman-훼 forest using LyMAS, and reconstruct the 3D density field between sightlines through Wiener filtering in a configuration compatible with the future WEAVE-QSO observations. The fidelity of the reconstruction is assessed by measuring one- and two-point statistics from the distribution of critical points in the cosmic web. In addition, initial Lagrangian statistics are predicted from first principles, and measurements of the connectivity of the cosmic web are performed. The reconstruction captures well the expected features in the auto- and cross-correlations of the critical points. This remains true after a realistic noise is added to the synthetic spectra, even though sparsity of sightlines introduces systematics, especially in the cross-correlations of points with mixed signature. Specifically, the most striking clustering features involving filaments and walls could be measured with up to 4 sigma of significance with a WEAVE-QSO-like survey. Moreover, the connectivity of each peak identified in the reconstructed field is globally consistent with its counterpart in the original field, indicating that the reconstruction preserves the geometry of the density field not only statistically, but also locally. Hence the critical points relative positions within the tomographic reconstruction could be used as standard rulers for dark energy by WEAVE-QSO and similar surveys.Forecasts for WEAVE-QSO: 3D clustering and connectivity of critical points with Lyman-$\alpha$ tomography
(2022)
The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) survey design, reductions, and detections
Astrophysical Journal American Astronomical Society 923:2 (2021) 217
Abstract:
We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg2 area encompassing a co-moving volume of 10.9 Gpc3. No pre-selection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the COSMOS, Extended Groth Strip, and GOODS-N fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.The HETDEX instrumentation: Hobby-Eberly Telescope wide field upgrade and VIRUS
Astronomical Journal IOP Publishing 162:6 (2021) 298