Young stars in nearby early-type galaxies: SED fitting based on ultraviolet (UV) and optical imaging
Proceedings of the International Astronomical Union 7:S284 (2011) 240-243
Abstract:
Recent studies from the Galaxy Evolution Explore (GALEX) ultraviolet (UV) data have demonstrated that the recent star formation is more common in early-type galaxies (ETGs) than we used to believe. The UV is one order of magnitude more sensitive than the optical to the presence of young stellar populations. The near-ultraviolet (NUV) lights of ETGs, especially, are used to reveal their residual star formation history. Here we used the GALEX UV data of 34 nearby early-type galaxies from the SAURON sample, all of which have optical data from MDM Observatory. At least 15% of the galaxies in this sample show blue UV-optical colours suggesting recent star formation (Jeong et al. 2009). These NUV blue galaxies are generally low velocity dispersion systems and change the slopes of scaling relations (colour-magnitude relations and fundamental planes) and increase the scatters. To quantify the amount of recent star formation in our sample, we assume two bursts of star formation, allowing us to constrain the age and mass fraction of the young component pixel by pixel (Jeong et al. 2007). The pixel-by-pixel SED fitting based on UV and optical imaging reveals that the mass fraction of young (< 1 Gyr old) stars in ETGs varies between 1 and 3% in the nearby universe (Jeong et al. in prep.). We will compare our results with the prediction from the hierarchical merger paradigm to understand the mechanism of low-level recent star formation observed in early-type galaxies. © 2012 International Astronomical Union.Discovery of an active galactic nucleus driven molecular outflow in the local early-type galaxy NGC 1266
Astrophysical Journal 735:2 (2011)
Abstract:
We report the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266. The single-dish CO profile exhibits emission to 400kms-1 and requires a nested Gaussian fit to be properly described. Interferometric observations reveal a massive, centrally concentrated molecular component with a mass of 1.1 × 109 M and a molecular outflow with a molecular mass of 2.4 × 107 M . The molecular gas close to the systemic velocity consists of a rotating, compact nucleus with a mass of about 4.1 × 108 M within a radius of 60pc. This compact molecular nucleus has a surface density of 2.7 × 104 M pc-2, more than two orders of magnitude larger than that of giant molecular clouds in the disk of the Milky Way, and it appears to sit on the Kennicutt-Schmidt relation despite its extreme kinematics and energetic activity. We interpret this nucleus as a disk that confines the outflowing wind. A mass outflow rate of 13 M yr-1 leads to a depletion timescale of ≲85 Myr. The star formation in NGC 1266 is insufficient to drive the outflow, and thus it is likely driven by the active galactic nucleus. The concentration of the majority of the molecular gas in the central 100pc requires an extraordinary loss of angular momentum, but no obvious companion or interacting galaxy is present to enable the transfer. NGC 1266 is the first known outflowing molecular system that does not show any evidence of a recent interaction. © 2011. The American Astronomical Society. All rights reserved..THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS**Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 183.A-0781).
The Astrophysical Journal American Astronomical Society 733:2 (2011) 101
HARMONI: A first light spectrograph for the E-ELT
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
We describe the current status of the HARMONI instrument design, which will form the basis for the first-light integral field spectrograph on the European Extremely Large Telescope. We review the phase A design, and highlight current on-going work to evolve the design in-line changing telescope requirements and lessons learned during the Phase A work. We also outline the key science drivers for the instrument, and describe briefly the requirements for the laser tomographic adaptive optics system which is expected to feed HARMONI.The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: Science goals and selection criteria
Monthly Notices of the Royal Astronomical Society 413:2 (2011) 813-836