Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Tus protein locking onto DNA

Nynke Dekker

Professor

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Replication Dynamics
nynke.dekker@physics.ox.ac.uk
Telephone: 01865 (2)72359
Biochemistry Building, room 30-088
direct access to research group webpage
  • About
  • Publications

Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB.

Nature 434:7033 (2005) 671-674

Authors:

Daniel A Koster, Vincent Croquette, Cees Dekker, Stewart Shuman, Nynke H Dekker

Abstract:

Topoisomerases relieve the torsional strain in DNA that is built up during replication and transcription. They are vital for cell proliferation and are a target for poisoning by anti-cancer drugs. Type IB topoisomerase (TopIB) forms a protein clamp around the DNA duplex and creates a transient nick that permits removal of supercoils. Using real-time single-molecule observation, we show that TopIB releases supercoils by a swivel mechanism that involves friction between the rotating DNA and the enzyme cavity: that is, the DNA does not freely rotate. Unlike a nicking enzyme, TopIB does not release all the supercoils at once, but it typically does so in multiple steps. The number of supercoils removed per step follows an exponential distribution. The enzyme is found to be torque-sensitive, as the mean number of supercoils per step increases with the torque stored in the DNA. We propose a model for topoisomerization in which the torque drives the DNA rotation over a rugged periodic energy landscape in which the topoisomerase has a small but quantifiable probability to religate the DNA once per turn.
More details from the publisher
More details
More details

Atomic force microscopy shows that vaccinia topoisomerase IB generates filaments on DNA in a cooperative fashion.

Nucleic acids research 33:18 (2005) 5945-5953

Authors:

Fernando Moreno-Herrero, Laurent Holtzer, Daniel A Koster, Stewart Shuman, Cees Dekker, Nynke H Dekker

Abstract:

Type IB DNA topoisomerases cleave and rejoin one strand of the DNA duplex, allowing for the removal of supercoils generated during replication and transcription. In addition, electron microscopy of cellular and viral TopIB-DNA complexes has suggested that the enzyme promotes long-range DNA-DNA crossovers and synapses. Here, we have used the atomic force microscope to visualize and quantify the interaction between vaccinia topoisomerase IB (vTopIB) and DNA. vTopIB was found to form filaments on nicked-circular DNA by intramolecular synapsis of two segments of a single DNA molecule. Measuring the filament length as a function of protein concentration showed that synapsis is a highly cooperative process. At high protein:DNA ratios, synapses between distinct DNA molecules were observed, which led to the formation of large vTopIB-induced DNA clusters. These clusters were observed in the presence of Mg2+, Ca2+ or Mn2+, suggesting that the formation of intermolecular vTopIB-mediated DNA synapsis is favored by screening of the DNA charge.
More details from the publisher
More details
More details

Torque-limited RecA polymerization on dsDNA.

Nucleic acids research 33:7 (2005) 2099-2105

Authors:

Thijn van der Heijden, John van Noort, Hendrikje van Leest, Roland Kanaar, Claire Wyman, Nynke H Dekker, Cees Dekker

Abstract:

The assembly of RecA onto a torsionally constrained double-stranded DNA molecule was followed in real time using magnetic tweezers. Formation of a RecA-DNA filament on the DNA tether was stalled owing to different physical processes depending on the applied stretching force. For forces up to 3.6 pN, the reaction stalled owing to the formation of positive plectonemes in the remaining DNA molecule. Release of these plectonemes by rotation of the magnets led to full coverage of the DNA molecule by RecA. At stretching forces larger than 3.6 pN, the twist induced during filament formation caused the reaction to stall before positive supercoils were generated. We deduce a maximum built-up torsion of 10.1 +/- 0.7 k(b)T. In vivo this built-up torsion may be used to favor regression of a stalled replication fork or to free the chromosomal DNA in E.coli from its condensing proteins.
More details from the publisher
More details
More details

Joining of long double-stranded RNA molecules through controlled overhangs.

Nucleic acids research 32:18 (2004) e140

Authors:

NH Dekker, JA Abels, PTM Veenhuizen, MM Bruinink, C Dekker

Abstract:

We describe two methods for creating long (>1 kb) dsRNA molecules with specific, user-controlled overhangs for efficient hybridization and ligation. The two methods create double-stranded RNA (dsRNA) molecules with 5' overhangs or with 3' overhangs using T7 RNA polymerase (T7 RNAP) in transcription reactions of carefully designed PCR products. Primers utilized in the PCR reactions provide the template for the desired dsRNA overhangs. These methods provide complete control of the length and the sequence of the overhangs. This supplies a tool which is particularly lacking in dsRNA biochemistry given the absence of restriction endonucleases active on these substrates.
More details from the publisher
More details
More details

Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I.

Nature structural & molecular biology 11:9 (2004) 838-843

Authors:

Ralf Seidel, John van Noort, Carsten van der Scheer, Joost GP Bloom, Nynke H Dekker, Christina F Dutta, Alex Blundell, Terence Robinson, Keith Firman, Cees Dekker

Abstract:

Type I restriction enzymes bind sequence-specifically to unmodified DNA and subsequently pull the adjacent DNA toward themselves. Cleavage then occurs remotely from the recognition site. The mechanism by which these members of the superfamily 2 (SF2) of helicases translocate DNA is largely unknown. We report the first single-molecule study of DNA translocation by the type I restriction enzyme EcoR124I. Mechanochemical parameters such as the translocation rate and processivity, and their dependence on force and ATP concentration, are presented. We show that the two motor subunits of EcoR124I work independently. By using torsionally constrained DNA molecules, we found that the enzyme tracks along the helical pitch of the DNA molecule. This assay may be directly applicable to investigating the tracking of other DNA-translocating motors along their DNA templates.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet