Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Weak lensing in the Horizon-AGN simulation lightcone. Small scale baryonic effects

Authors:

C Gouin, R Gavazzi, C Pichon, Y Dubois, C Laigle, NE Chisari, S Codis, JULIEN Devriendt, S Peirani

Abstract:

Context. Accurate model predictions including the physics of baryons are required to make the most of the upcoming large cosmological surveys devoted to gravitational lensing. The advent of hydrodynamical cosmological simulations enables such predictions on sufficiently sizeable volumes. Aims. Lensing quantities (deflection, shear, convergence) and their statistics (convergence power spectrum, shear correlation functions, galaxy-galaxy lensing) are computed in the past lightcone built in the Horizon-AGN hydrodynamical cosmological simulation, which implements our best knowledge on baryonic physics at the galaxy scale in order to mimic galaxy populations over cosmic time. Methods. Lensing quantities are generated over a one square degree field of view by performing multiple-lens plane ray-tracing through the lightcone, taking full advantage of the 1 kpc resolution and splitting the line of sight over 500 planes all the way to redshift z~7. Two methods are explored (standard projection of particles with adaptive smoothing, and integration of the acceleration field) to assert a good implementation. The focus is on small scales where baryons matter most. Results. Standard cosmic shear statistics are impacted at the 10% level by the baryonic component for angular scales below a few arcmin. The galaxy-galaxy lensing signal, or galaxy-shear correlation function, is consistent with measurements for the redshift z~0.5 massive galaxy population. At higher redshift z>1, the impact of magnification bias on this correlation is relevant for separations greater than 1 Mpc. Conclusions. This work is pivotal for all current and upcoming weak lensing surveys and represents a first step towards building a full end-to-end generation of lensed mock images from large cosmological hydrodynamical simulations.
More details from the publisher
Details from ArXiV
More details

deepCool: Fast and Accurate Estimation of Cooling Rates in Irradiated Gas with Artificial Neural Networks

Authors:

TP Galligan, H Katz, T Kimm, J Rosdahl, J Blaizot, JULIEN Devriendt, A Slyz

Abstract:

Accurate models of radiative cooling are a fundamental ingredient of modern cosmological simulations. Without cooling, accreted baryons will not efficiently dissipate their energy and collapse to the centres of haloes to form stars. It is well established that local variations in the amplitude and shape of the spectral energy distribution of the radiation field can drastically alter the cooling rate. Here we introduce deepCool, deepHeat, and deepMetal: methods for accurately modelling the total cooling rates, total heating rates, and metal-line only cooling rates of irradiated gas using artificial neural networks. We train our algorithm on a high-resolution cosmological radiation hydrodynamics simulation and demonstrate that we can predict the cooling rate, as measured with the photoionisation code CLOUDY, under the influence of a local radiation field, to an accuracy of ~5%. Our method is computationally and memory efficient, making it suitable for deployment in state-of-the-art radiation hydrodynamics simulations. We show that the circumgalactic medium and diffuse gas surrounding the central regions of a galaxy are most affected by the interplay of radiation and gas, and that standard cooling functions that ignore the local radiation field can incorrectly predict the cooling rate by more than an order of magnitude, indicating that the baryon cycle in galaxies is affected by the influence of a local radiation field on the cooling rate.
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 94
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • Page 101
  • Current page 102

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet