Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Star-gas misalignment in galaxies: I. The properties of galaxies from the Horizon-AGN simulation and comparisons to SAMI

Authors:

Donghyeon J Khim, Sukyoung K Yi, Yohan Dubois, Julia J Bryant, Christophe Pichon, Scott M Croom, Joss Bland-Hawthorn, Sarah Brough, Hoseung Choi, Julien Devriendt, Brent Groves, Matt S Owers, Samuel N Richards, Jesse van de Sande, Sarah M Sweet

Abstract:

Recent integral field spectroscopy observations have found that about 11\% of galaxies show star-gas misalignment. The misalignment possibly results from external effects such as gas accretion, interaction with other objects, and other environmental effects, hence providing clues to these effects. We explore the properties of misaligned galaxies using Horizon-AGN, a large-volume cosmological simulation, and compare the result with the result of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. Horizon-AGN can match the overall misalignment fraction and reproduces the distribution of misalignment angles found by observations surprisingly closely. The misalignment fraction is found to be highly correlated with galaxy morphology both in observations and in the simulation: early-type galaxies are substantially more frequently misaligned than late-type galaxies. The gas fraction is another important factor associated with misalignment in the sense that misalignment increases with decreasing gas fraction. However, there is a significant discrepancy between the SAMI and Horizon-AGN data in the misalignment fraction for the galaxies in dense (cluster) environments. We discuss possible origins of misalignment and disagreement.
More details from the publisher
More details
Details from ArXiV

The FIR/submm window on galaxy formation

The Birth of Galaxies

Authors:

B Guiderdoni, FR Bouchet, J Devriendt, E Hivon, JL Puget

Abstract:

Our view on the deep universe has been so far biased towards optically bright galaxies. Now, the measurement of the Cosmic Infrared Background in FIRAS and DIRBE residuals, and the observations of FIR/submm sources by the ISOPHOT and SCUBA instruments begin unveiling the ``optically dark side'' of galaxy formation. Though the origin of dust heating is still unsolved, it appears very likely that a large fraction of the FIR/submm emission is due to heavily-extinguished star formation. Consequently, the level of the CIRB implies that about 2/3 of galaxy/star formation in the universe is hidden by dust shrouds. In this review, we introduce a new modeling of galaxy formation and evolution that provides us with specific predictions in FIR/submm wavebands. These predictions are compared with the current status of the observations. Finally, the capabilities of current and forthcoming instruments for all-sky and deep surveys of FIR/submm sources are briefly described.
More details
Details from ORA
Details from ArXiV

The Horizon-AGN Simulation: Morphological Diversity of Galaxies Promoted by AGN feedback

Authors:

Yohan Dubois, Sébastien Peirani, Christophe Pichon, Julien Devriendt, Raphael Gavazzi, Charlotte Welker, Marta Volonteri

Abstract:

The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.
Details from ORA
More details from the publisher
More details
More details
Details from ArXiV

The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations

MNRAS

Authors:

Jesse van de Sande, Claudia DP Lagos, Charlotte Welker, Joss Bland-Hawthorn, Felix Schulze, Rhea-Silvia Remus, Yannick Bahe, Sarah Brough, Julia J Bryant, Luca Cortese, Scott M Croom, Julien Devriendt, Yohan Dubois, Michael Goodwin, Iraklis S Konstantopoulos, Jon S Lawrence, Anne M Medling, Christophe Pichon, Samuel N Richards, Sebastian F Sanchez, Nicholas Scott, Sarah M Sweet

Abstract:

Cosmological hydrodynamical simulations are rich tools to understand the build-up of stellar mass and angular momentum in galaxies, but require some level of calibration to observations. We compare predictions at $z\sim0$ from the Eagle, Hydrangea, Horizon-AGN, and Magneticum simulations with IFS data from the SAMI Galaxy Survey, ATLAS-3D, CALIFA and MASSIVE surveys. The main goal of this work is to simultaneously compare structural, dynamical, and stellar population measurements. We have taken great care to ensure that our simulated measurements match the observational methods as closely as possible, and we construct samples that match the observed stellar mass distribution for the combined IFS sample. We find that the Eagle and Hydrangea simulations reproduce many galaxy relations but with some offsets at high stellar masses. There are moderate mismatches in $R_e$ (+), $\epsilon$ (-), $\sigma_e$ (-), and mean stellar age (+), where a plus sign indicates that quantities are too high on average, and minus sign too low. The Horizon-AGN simulations qualitatively reproduce several galaxy relations, but there are a number of properties where we find a quantitative offset to observations. Massive galaxies are better matched to observations than galaxies at low and intermediate masses. Overall, we find mismatches in $R_e$ (+), $\epsilon$ (-), $\sigma_e$ (-) and $(V/\sigma)_e$ (-). Magneticum matches observations well: this is the only simulation where we find ellipticities typical for disk galaxies, but there are moderate differences in $R_e$ (+), $\sigma_e$ (-), $(V/\sigma)_e$ (-) and mean stellar age (+). Our comparison between simulations and observational data has highlighted several areas for improvement, such as the need for improved modelling resulting in a better vertical disk structure, yet our results demonstrate the vast improvement of cosmological simulations in recent years.
More details from the publisher
More details
Details from ArXiV

The SAMI Galaxy Survey: Towards an Optimal Classification of Galaxy Stellar Kinematics

Authors:

Jesse van de Sande, Sam P Vaughan, Luca Cortese, Nicholas Scott, Joss Bland-Hawthorn, Scott M Croom, Claudia DP Lagos, Sarah Brough, Julia J Bryant, Julien Devriendt, Yohan Dubois, Francesco D'Eugenio, Caroline Foster, Amelia Fraser-McKelvie, Katherine E Harborne, Jon S Lawrence, Sree Oh, Matt S Owers, Adriano Poci, Rhea-Silvia Remus, Samuel N Richards, Felix Schulze, Sarah M Sweet, Mathew R Varidel, Charlotte Welker

Abstract:

Large galaxy samples from multi-object IFS surveys now allow for a statistical analysis of the z~0 galaxy population using resolved kinematics. However, the improvement in number statistics comes at a cost, with multi-object IFS surveys more severely impacted by the effect of seeing and lower signal-to-noise. We present an analysis of ~1800 galaxies from the SAMI Galaxy Survey and investigate the spread and overlap in the kinematic distributions of the spin parameter proxy $\lambda_{Re}$ as a function of stellar mass and ellipticity. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with $kinemetry$ show considerable overlap in the $\lambda_{Re}$-$\varepsilon_e$ diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in $\lambda_{Re}$ space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the $\lambda_{Re}$-$\log(M_*/M_{\odot})$ distribution. As a function of mass, we investigate whether the data are best fit with a single kinematic distribution or with two. Below $\log(M_*/M_{\odot})$~10.5 a single beta distribution is sufficient to fit the complete $\lambda_{Re}$ distribution, whereas a second beta distribution is required above $\log(M_*/M_{\odot})$~10.5 to account for a population of low-$\lambda_{Re}$ galaxies, presenting the cleanest separation of the two populations. We apply the same analysis to mock-observations from cosmological simulations. The mixture model predicts a bimodal $\lambda_{Re}$ distribution for all simulations, albeit with different positions of the $\lambda_{Re}$ peaks and with different ratios of both populations. Our analysis validates the conclusions from previous, smaller IFS surveys, but also demonstrates the importance of using kinematic selection criteria that are dictated by the quality of the observed or simulated data.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • Current page 99
  • Page 100
  • Page 101
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet