Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

GalICS 2.1: a new semianalytic model for cold accretion, cooling, feedback, and their roles in galaxy formation

Monthly Notices of the Royal Astronomical Society Oxford Univerity Press 497:1 (2020) 279-301

Authors:

A Cattaneo, I Koutsouridou, E Tollet, J Devriendt, Y Dubois

Abstract:

Dekel & Birnboim proposed that the mass-scale that separates late-type and early-type galaxies is linked to the critical halo mass Mcritvir for the propagation of a stable shock and showed that they could reproduce the observed bimodality scale for plausible values of the metallicity of the accreted gas Zaccr and the shock radius rs. Here, we take their analysis one step further and present a new semianalytic model that computes rs from first principles. This advancement allows us to compute Mcritvir individually for each halo. Separating cold-mode and hot-mode accretion has little effect on the final galaxy masses if feedback does not preferentially couple to the hot gas. We also present an improved model for stellar feedback where ∼70 per cent of the wind mass is in a cold galactic fountain with a shorter reaccretion time-scale at high masses. The latter is the key mechanism that allows us to reproduce the low-mass end of the mass function of galaxies over the entire redshift range 0 < z < 2.5. Cooling must be mitigated to avoid overpredicting the number density of galaxies with stellar mass Mstars>1011M⊙ but is important to form intermediate-mass galaxies. At Mvir>3×1011M⊙⁠, cold accretion is more important at high z, where gas is accreted from smaller solid angles, but this is not true at lower masses because high-z filaments have lower metallicities. Our predictions are consistent with the observed metallicity evolution of the intergalactic medium at 0 < z < 5.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Spatially offset black holes in the Horizon-AGN simulation and comparison to observations

(2020)

Authors:

Deaglan J Bartlett, Harry Desmond, Julien Devriendt, Pedro G Ferreira, Adrianne Slyz
More details from the publisher

The Horizon Run 5 Cosmological Hydrodynamic Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

(2020)

Authors:

Jaehyun Lee, Jihye Shin, Owain N Snaith, Yonghwi Kim, C Gareth Few, Julien Devriendt, Yohan Dubois, Leah M Cox, Sungwook E Hong, Oh-Kyoung Kwon, Chan Park, Christophe Pichon, Juhan Kim, Brad K Gibson, Changbom Park
More details from the publisher

How primordial magnetic fields shrink galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 495:4 (2020) 4475-4495

Authors:

Sergio Martin-Alvarez, Adrianne Slyz, Julien Devriendt, Carlos Gomez-Guijarro

Abstract:

As one of the prime contributors to the interstellar medium energy budget, magnetic fields naturally play a part in shaping the evolution of galaxies. Galactic magnetic fields can originate from strong primordial magnetic fields provided these latter remain below current observational upper limits. To understand how such magnetic fields would affect the global morphological and dynamical properties of galaxies, we use a suite of high-resolution constrained transport magnetohydrodynamic cosmological zoom simulations where we vary the initial magnetic field strength and configuration along with the prescription for stellar feedback. We find that strong primordial magnetic fields delay the onset of star formation and drain the rotational support of the galaxy, diminishing the radial size of the galactic disc and driving a higher amount of gas towards the centre. This is also reflected in mock UVJ observations by an increase in the light profile concentration of the galaxy. We explore the possible mechanisms behind such a reduction in angular momentum, focusing on magnetic braking. Finally, noticing that the effects of primordial magnetic fields are amplified in the presence of stellar feedback, we briefly discuss whether the changes we measure would also be expected for galactic magnetic fields of non-primordial origin.
More details from the publisher
Details from ORA
More details
Details from ArXiV

How primordial magnetic fields shrink galaxies

(2020)

Authors:

Sergio Martin-Alvarez, Adrianne Slyz, Julien Devriendt, Carlos Gómez-Guijarro
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet