Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Massive spheroids can form in single minor mergers

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:4 (2019) 4679-4689

Authors:

RA Jackson, G Martin, S Kaviraj, C Laigle, Julien Devriendt, Y Dubois, C Pichon

Abstract:

Understanding how rotationally supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of ‘ex situ’ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M* > 1011M⊙) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11–0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myr, coupled with strong in situ star formation. While this channel produces a minority (∼5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers – or any significant merging at all – contrary to what is classically believed.

More details from the publisher
Details from ORA
More details
Details from ArXiV

Comparing Galaxy Clustering in Horizon-AGN Simulated Lightcone Mocks and VIDEO Observations

(2019)

Authors:

Peter Hatfield, Clotilde Laigle, Matt Jarvis, Julien Devriendt, Iary Davidzon, Olivier Ilbert, Christophe Pichon, Yohan Dubois
More details from the publisher

Massive spheroids can form in single minor mergers

(2019)

Authors:

RA Jackson, G Martin, S Kaviraj, C Laigle, JEG Devriendt, Y Dubois, C Pichon
More details from the publisher

HORIZON-AGN virtual observatory – 2. Template-free estimates of galaxy properties from colours

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:4 (2019) 4817-4835

Authors:

I Davidzon, C Laigle, PL Capak, O Ilbert, DC Masters, S Hemmati, N Apostolakos, J Coupon, SDL Torre, Julien Devriendt, Y Dubois, D Kashino, S Paltani, C Pichon

Abstract:

Using the HORIZON-AGN hydrodynamical simulation and self-organizing maps (SOMs), we show how to compress the complex, high-dimensional data structure of a simulation into a 2D grid, which greatly facilitates the analysis of how galaxy observables are connected to intrinsic properties. We first verify the tight correlation between the observed 0.3–5 μm broad-band colours of HORIZON-AGN galaxies and their high-resolution spectra. The correlation is found to extend to physical properties such as redshift, stellar mass, and star formation rate (SFR). This direct mapping from colour to physical parameter space still works after including photometric uncertainties that mimic the COSMOS survey. We then label the SOM grid with a simulated calibration sample to estimate redshift and SFR for COSMOS-like galaxies up to z ∼ 3. In comparison to state-of-the-art techniques based on synthetic templates, our method is comparable in performance but less biased at estimating redshifts, and significantly better at predicting SFRs. In particular, our ‘data-driven’ approach, in contrast to model libraries, intrinsically allows for the complexity of galaxy formation and can handle sample biases. We advocate that observations to calibrate this method should be one of the goals of next-generation galaxy surveys.

More details from the publisher
Details from ORA
More details
Details from ArXiV

The impact of AGN feedback on galaxy intrinsic alignments in the Horizon simulations

(2019)

Authors:

Adam Soussana, Nora Elisa Chisari, Sandrine Codis, Ricarda S Beckmann, Yohan Dubois, Julien Devriendt, Sebastien Peirani, Clotilde Laigle, Christophe Pichon, Adrianne Slyz
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet