Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Zooming in on supermassive black holes: how resolving their gas cloud host renders their accretion episodic

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2018)

Authors:

Ricarda S Beckmann, Julien Devriendt, Adrianne Slyz

Abstract:

Born in rapidly evolving mini-halos during the first billion years of the Universe, super- massive black holes (SMBH) feed from gas flows spanning many orders of magnitude, from the cosmic web in which they are embedded to their event horizon. As such, accretion onto SMBHs constitutes a formidable challenge to tackle numerically, and currently requires the use of sub-grid models to handle the flow on small, unresolved scales. In this paper, we study the impact of resolution on the accretion pattern of SMBHs initially inserted at the heart of dense galactic gas clouds, using a custom super-Lagrangian refinement scheme to resolve the black hole (BH) gravitational zone of influence. We find that once the self-gravitating gas cloud host is sufficiently well re- solved, accretion onto the BH is driven by the cloud internal structure, independently of the BH seed mass, provided dynamical friction is present during the early stages of cloud collapse. For a pristine gas mix of hydrogen and helium, a slim disc develops around the BH on sub-parsec scales, turning the otherwise chaotic BH accretion duty cycle into an episodic one, with potentially important consequences for BH feedback. In the presence of such a nuclear disc, BH mass growth predominantly occurs when infalling dense clumps trigger disc instabilities, fuelling intense albeit short-lived gas accretion episodes.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN

(2018)

Authors:

Mélanie Habouzit, Marta Volonteri, Rachel S Somerville, Yohan Dubois, Sébastien Peirani, Christophe Pichon, Julien Devriendt
More details from the publisher

The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations

(2018)

Authors:

Jesse van de Sande, Claudia DP Lagos, Charlotte Welker, Joss Bland-Hawthorn, Felix Schulze, Rhea-Silvia Remus, Yannick Bahe, Sarah Brough, Julia J Bryant, Luca Cortese, Scott M Croom, Julien Devriendt, Yohan Dubois, Michael Goodwin, Iraklis S Konstantopoulos, Jon S Lawrence, Anne M Medling, Christophe Pichon, Samuel N Richards, Sebastian F Sanchez, Nicholas Scott, Sarah M Sweet
More details from the publisher

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

(2018)

Authors:

Harley Katz, Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Taysun Kimm
More details from the publisher

Galaxies flowing in the oriented saddle frame of the cosmic web

(2018)

Authors:

K Kraljic, C Pichon, Y Dubois, S Codis, C Cadiou, J Devriendt, M Musso, C Welker, S Arnouts, HS Hwang, C Laigle, S Peirani, A Slyz, M Treyer, D Vibert
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet