Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Erratum: Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 459:1 (2016) 256-256

Authors:

Taysun Kimm, Renyue Cen, Julien Devriendt, Yohan Dubois, Adrianne Slyz
More details from the publisher
More details

The Horizon-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

(2016)

Authors:

Yohan Dubois, Sebastien Peirani, Christophe Pichon, Julien Devriendt, Raphael Gavazzi, Charlotte Welker, Marta Volonteri
More details from the publisher

The Horizon-AGN simulation: evolution of galaxy properties over cosmic time

(2016)

Authors:

S Kaviraj, C Laigle, T Kimm, JEG Devriendt, Y Dubois, C Pichon, A Slyz, E Chisari, S Peirani
More details from the publisher

The cosmic evolution of massive black holes in the Horizon-AGN simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 460:3 (2016) 2979-2996

Authors:

Marta Volonteri, Yohan Dubois, Christophe Pichon, Julien Devriendt

Abstract:

We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH–galaxy mass correlation. Starting at z ∼ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Comparing Simulations of AGN Feedback

(2016)

Authors:

Mark LA Richardson, Evan Scannapieco, Julien Devriendt, Adrianne Slyz, Robert J Thacker, Yohan Dubois, James Wurster, Joseph Silk
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet