Evidence for non-merger co-evolution of galaxies and their supermassive black holes
Monthly Notices of the Royal Astronomical Society Oxford University Press 527:4 (2023) 10855-10866
Abstract:
Recent observational and theoretical studies have suggested that supermassive black holes (SMBHs) grow mostly through non-merger (‘secular’) processes. Since galaxy mergers lead to dynamical bulge growth, the only way to observationally isolate non-merger growth is to study galaxies with low bulge-to-total mass ratio (e.g. B/T < 10 per cent). However, bulge growth can also occur due to secular processes, such as disc instabilities, making disc-dominated selections a somewhat incomplete way to select merger-free systems. Here we use the Horizon-AGN simulation to select simulated galaxies which have not undergone a merger since z = 2, regardless of bulge mass, and investigate their location on typical black hole-galaxy scaling relations in comparison to galaxies with merger dominated histories. While the existence of these correlations has long been interpreted as co-evolution of galaxies and their SMBHs driven by galaxy mergers, we show here that they persist even in the absence of mergers. We find that the correlations between SMBH mass and both total mass and stellar velocity dispersion are independent of B/T ratio for both merger-free and merger-dominated galaxies. In addition, the bulge mass and SMBH mass correlation is still apparent for merger-free galaxies, the intercept for which is dependent on B/T. Galaxy mergers reduce the scatter around the scaling relations, with merger-free systems showing broader scatter. We show that for merger-free galaxies, the co-evolution is dominated by radio-mode feedback, and suggest that the long periods of time between galaxy mergers make an important contribution to the co-evolution between galaxies and SMBHs in all galaxies.Translators of galaxy morphology indicators between observation and simulation
Astrophysical Journal American Astronomical Society 950:1 (2023) 4
Abstract:
Based on the recent advancements in numerical simulations of galaxy formation, we anticipate the achievement of realistic models of galaxies in the near future. Morphology is the most basic and fundamental property of galaxies, yet observations and simulations still use different methods to determine galaxy morphology, making it difficult to compare them. We hereby perform a test on the recent NEWHORIZON simulation, which has spatial and mass resolutions that are remarkably high for a large-volume simulation, to resolve the situation. We generate mock images for the simulated galaxies using SKIRT, which calculates complex radiative transfer processes in each galaxy. We measure morphological and kinematic indicators using photometric and spectroscopic methods following observers' techniques. We also measure the kinematic disk-to-total ratios using the Gaussian mixture model and assume that they represent the true structural composition of galaxies. We found that spectroscopic indicators such as V/σ and λR closely trace the kinematic disk-to-total ratios. In contrast, photometric disk-to-total ratios based on the radial profile fitting method often fail to recover the true kinematic structure of galaxies, especially small ones. We provide translating equations between various morphological indicators.Population statistics of intermediate-mass black holes in dwarf galaxies using the newhorizon simulation
Monthly Notices of the Royal Astronomical Society Oxford University Press 523:4 (2023) 5610-5623
Abstract:
While it is well established that supermassive black holes (SMBHs) coevolve with their host galaxy, it is currently less clear how lower-mass black holes, so-called intermediate-mass black holes (IMBHs), evolve within their dwarf galaxy hosts. In this paper, we present results on the evolution of a large sample of IMBHs from the NEWHORIZON zoom volume, which has a radius of 10 comoving Mpc. We show that occupation fractions of IMBHs in dwarf galaxies are at least 50 per cent for galaxies with stellar masses down to 106 M☉, but BH growth is very limited in dwarf galaxies. In NEWHORIZON, IMBHs growth is somewhat more efficient at high redshift z = 3 but in general, IMBHs do not grow significantly until their host galaxy leaves the dwarf regime. As a result, NEWHORIZON underpredicts observed AGN luminosity function and AGN fractions. We show that the difficulties of IMBHs to remain attached to the centres of their host galaxies plays an important role in limiting their mass growth, and that this dynamic evolution away from galactic centres becomes stronger at lower redshift.Inferring dark matter halo properties for H i-selected galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 526:4 (2023) 5861-5882
Abstract:
We set constraints on the dark matter halo mass and concentration of ∼22 000 individual galaxies visible both in H I (from the ALFALFA survey) and optical light (from the Sloan Digital Sky Survey). This is achieved by combining two Bayesian models, one for the H I line width as a function of the stellar and neutral hydrogen mass distributions in a galaxy using kinematic modelling, and the other for the galaxy’s total baryonic mass using the technique of inverse subhalo abundance matching. We hence quantify the constraining power on halo properties of spectroscopic and photometric observations, and assess their consistency. We find good agreement between the two sets of posteriors, although there is a sizeable population of low-line width galaxies that favour significantly smaller dynamical masses than expected from abundance matching (especially for cuspy halo profiles). Abundance matching provides significantly more stringent bounds on halo properties than the H I line width, even with a mass–concentration prior included, although combining the two provides a mean gain of 40 per cent for the sample when fitting an NFW profile. We also use our kinematic posteriors to construct a baryonic mass–halo mass relation, which we find to be near power law, and with a somewhat shallower slope than expected from abundance matching. Our method demonstrates the potential of combining photometric and spectroscopic observations to precisely map out the dark matter distribution at the galaxy scale using upcoming H I surveys such as the SKA.Cosmological simulations of the same spiral galaxy: connecting the dark matter distribution of the host halo with the subgrid baryonic physics
Journal of Cosmology and Astroparticle Physics IOP Publishing 2023:5 (2023) 012