Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Two Modes of LyC Escape From Bursty Star Formation: Implications for [C II] Deficits and the Sources of Reionization

(2022)

Authors:

Harley Katz, Aayush Saxena, Joki Rosdahl, Taysun Kimm, Jeremy Blaizot, Thibault Garel, Leo Michel-Dansac, Martin Haehnelt, Richard S Ellis, Laura Penterrici, Julien Devriendt, Adrianne Slyz
More details from the publisher
Details from ArXiV

The information on halo properties contained in spectroscopic observations of late-type galaxies

(2022)

Authors:

Tariq Yasin, Harry Desmond, Julien Devriendt, Adrianne Slyz
More details from the publisher
Details from ORA
Details from ArXiV

Star formation history and transition epoch of cluster galaxies based on the Horizon-AGN simulation

(2022)

Authors:

Seyoung Jeon, Sukyoung Yi, Yohan Dubois, Aeree Chung, Julien Devriendt, San Han, Ryan A Jackson, Taysun Kimm, Christophe Pichon, Jinsu Rhee
More details from the publisher
Details from ArXiV

Intrinsic correlations of galaxy sizes in a hydrodynamical cosmological simulation

(2022)

Authors:

Harry Johnston, Dana Sophia Westbeek, Sjoerd Weide, Nora Elisa Chisari, Yohan Dubois, Julien Devriendt, Christophe Pichon
More details from the publisher
Details from ArXiV

The effect of local Universe constraints on halo abundance and clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press 516:3 (2022) 3592-3601

Authors:

Maxwell L Hutt, Harry Desmond, Julien Devriendt, Adrianne Slyz

Abstract:

Cosmological N-body simulations of the dark matter component of the universe typically use initial conditions with a fixed power spectrum and random phases of the density field, leading to structure consistent with the local distribution of galaxies only in a statistical sense. It is, however, possible to infer the initial phases which lead to the configuration of galaxies and clusters that we see around us. We analyse the CSiBORG suite of 101 simulations, formed by constraining the density field within 155 Mpc h−1 with dark matter particle mass 4.38 × 109 M⊙, to quantify the degree to which constraints imposed on 2.65 Mpc h−1 scales reduce variance in the halo mass function and halo–halo cross-correlation function on a range of scales. This is achieved by contrasting CSiBORG with a subset of the unconstrained Quijote simulations and expectations for the ΛCDM average. Using the FOF, PHEW, and HOP halofinders, we show that the CSiBORG suite beats cosmic variance at large mass scales (≳1014 M⊙ h−1), which are most strongly constrained by the initial conditions, and exhibits a significant halo–halo cross-correlation out to ∼30 Mpc h−1. Moreover, the effect of the constraints percolates down to lower mass objects and to scales below those on which they are imposed. Finally, we develop an algorithm to ‘twin’ haloes between realizations and show that approximately 50 per cent of haloes with mass greater than 1015 M⊙ h−1 can be identified in all realizations of the CSiBORG suite. We make the CSiBORG halo catalogues publicly available for future applications requiring knowledge of the local halo field.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet