The impact of TP-AGB stars on hierarchical galaxy formation models
ArXiv 0812.1225 (2008)
Abstract:
The spectro-photometric properties of galaxies in galaxy formation models are obtained by combining the predicted history of star formation and mass accretion with the physics of stellar evolution through stellar population models. In the recent literature, significant differences have emerged regarding the implementation of the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution. The emission in the TP-AGB phase dominates the bolometric and near-IR spectrum of intermediate-age (~1 Gyr) stellar populations, hence it is crucial for the correct modeling of the galaxy luminosities and colours. In this paper for the first time, we incorporate a full prescription of the TP-AGB phase in a semi-analytic model of galaxy formation. We find that the inclusion of the TP-AGB in the model spectra dramatically alters the predicted colour-magnitude relation and its evolution with redshift. When the TP-AGB phase is active, the rest-frame V-K galaxy colours are redder by almost 2 magnitudes in the redshift range z~2-3 and by 1 magnitude at z~1. Very red colours are produced in disk galaxies, so that the V-K colour distributions of disk and spheroids are virtually undistinguishable at low redshifts. We also find that the galaxy K-band emission is more than 1 magnitude higher in the range z~1-3. This may alleviate the difficulties met by the hierarchical clustering scenario in predicting the red galaxy population at high redshifts. The comparison between simulations and observations have to be revisited in the light of our results.The impact of TP-AGB stars on hierarchical galaxy formation models
(2008)
GalICS II: the [alpha/Fe]-mass relation in elliptical galaxies
(2008)
GalICS II: the [alpha/Fe]-mass relation in elliptical galaxies
ArXiv 0810.5753 (2008)
Abstract:
We aim at reproducing the mass- and sigma-[alpha/Fe] relations in the stellar populations of early-type galaxies by means of a cosmologically motivated assembly history for the spheroids. We implement a detailed treatment for the chemical evolution of H, He, O and Fe in GalICS, a semi-analytical model for galaxy formation which successfully reproduces basic low- and high-redshift galaxy properties. The contribution of supernovae (both type Ia and II) as well as low- and intermediate-mass stars to chemical feedback are taken into account. We find that this chemically improved GalICS does not produce the observed mass- and sigma-[alpha/Fe] relations. The slope is too shallow and scatter too large, in particular in the low and intermediate mass range. The model shows significant improvement at the highest masses and velocity dispersions, where the predicted [alpha/Fe] ratios are now marginally consistent with observed values. We show that this result comes from the implementation of AGN (plus halo) quenching of the star formation in massive haloes. A thorough exploration of the parameter space shows that the failure of reproducing the mass- and sigma-[alpha/Fe] relations can partly be attributed to the way in which star formation and feedback are currently modelled. The merger process is responsible for a part of the scatter. We suggest that the next generation of semi-analytical model should feature feedback (either stellar of from AGN) mechanisms linked to single galaxies and not only to the halo, especially in the low and intermediate mass range. The integral star formation history of a single galaxy determines its final stellar [alpha/Fe] as it might be expected from the results of closed box chemical evolution models. (abridged)Integral field unit spectrograph for extremely large telescopes
Publications of the Astronomical Society of the Pacific 120:868 (2008) 634-643