Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Hour-glass magnetic spectrum arising from a striped cluster spin-glass ground state in La1.75Sr0.25CoO4

Physical Review B - Condensed Matter and Materials Physics 88:16 (2013)

Authors:

SM Gaw, EC Andrade, M Vojta, CD Frost, DT Adroja, D Prabhakaran, AT Boothroyd

Abstract:

We report inelastic neutron scattering results that reveal an hour-glass magnetic excitation spectrum in La1.75Sr0.25CoO 4. The magnetic spectrum is similar to that observed previously in La1.67Sr0.33CoO4, but the spectral features are broader. We show that the spectrum of La1.75Sr 0.25CoO4 can be modelled by the spin dynamics of a system with a disordered cluster spin glass ground state. Bulk magnetization measurements are presented that support the proposed glassy ground state. The observations reiterate the importance of quasi-one-dimensional magnetic correlations and disorder for the hour-glass spectrum, and suggest that disordered spin and charge stripes exist at lower doping in La 2-xSrxCoO4 than previously thought. © 2013 American Physical Society.
More details from the publisher
More details

Erratum: Photoinduced melting of the orbital order in La 0.5Sr1.5MnO4 measured with 4-fs laser pulses (Physical Review B (2013) 88 (075107) DOI:10.1103/PhysRevB.88.075107)

Physical Review B - Condensed Matter and Materials Physics 88:15 (2013)

Authors:

R Singla, A Simoncig, M Först, D Prabhakaran, AL Cavalieri, A Cavalleri
More details from the publisher
More details

Crystal-field states of Pr3+ in the candidate quantum spin ice Pr2Sn2O7

Physical Review B - Condensed Matter and Materials Physics 88:10 (2013)

Authors:

AJ Princep, D Prabhakaran, AT Boothroyd, DT Adroja

Abstract:

Neutron time-of-flight spectroscopy has been employed to study the crystal-field splitting of Pr3+ in the pyrochlore stannate Pr 2Sn2O7. The crystal field has been parameterized from a profile fit to the observed neutron spectrum. The single-ion ground state is a well-isolated non-Kramers doublet of Γ3+ symmetry with a large Ising-like anisotropy, χzz/ χ⊥≈60 at 10 K, but with a significant admixture of terms |MJ≠±J, which can give rise to quantum zero-point fluctuations. This magnetic state satisfies the requirements for quantum spin-ice behavior. © 2013 American Physical Society.
More details from the publisher
More details

Critical exponents and irreversibility lines of La0.9Sr 0.1CoO3 single crystal

Journal of Applied Physics 113:18 (2013)

Authors:

N Khan, A Midya, P Mandal, D Prabhakaran

Abstract:

We have studied the dynamic and static critical behavior of spin glass transition in insulating La0.9Sr0.1CoO3 single crystal by ac susceptibility and dc magnetization measurements in the vicinity of its freezing temperature (Tf). The dynamic scaling analysis of the frequency dependence of ac susceptibility data yields the characteristic time constant τ 0 1.6 (9) × 10 - 12 s, the dynamic critical exponent z ν 9.5 (2), and a frequency dependence factor K Δ T f / T f (Δ log f) 0.017, indicating that the sample enters into a canonical spin-glass phase below Tf 34.8(2) K. The scaling analysis of non-linear magnetization in the vicinity of Tf through the static scaling hypothesis yields critical exponents β 0.89(1) and γ 2.9(1), which match well with that observed for well known three-dimensional (3D) Heisenberg spin glasses. From the longitudinal component of zero-field-cooled and field-cooled magnetization measurement, we have constructed the H-T phase diagram which represents the field evolution of two characteristic temperatures: the upper one, T w (H), indicates the onset of spin freezing in a uniform external field H, while the lower one, T s (H), marks the onset of strong irreversibility of the frozen state. The low field T s (H) follows the critical line suggested by dAlmeida-Thouless model for canonical spin glass, whereas the T w (H) exhibits a re-entrant behavior with a maximum in the T w (H) at a nonzero field above which it follows the Gabay-Toulouse (GT) critical line which is a characteristic of Heisenberg spin glass. The reentrant behavior of the GT line resembles that predicted theoretically for n-component vector spin glasses in the presence of a uniaxial anisotropy field. © 2013 AIP Publishing LLC.
More details from the publisher
More details

Brownian motion and quantum dynamics of magnetic monopoles in spin ice.

Nat Commun 4 (2013) 1535

Authors:

L Bovo, JA Bloxsom, D Prabhakaran, G Aeppli, ST Bramwell

Abstract:

Spin ice illustrates many unusual magnetic properties, including zero point entropy, emergent monopoles and a quasi liquid-gas transition. To reveal the quantum spin dynamics that underpin these phenomena is an experimental challenge. Here we show how crucial information is contained in the frequency dependence of the magnetic susceptibility and in its high frequency or adiabatic limit. The typical response of Dy(2)Ti(2)O(7) spin ice indicates that monopole diffusion is Brownian but is underpinned by spin tunnelling and is influenced by collective monopole interactions. The adiabatic response reveals evidence of driven monopole plasma oscillations in weak applied field, and unconventional critical behaviour in strong applied field. Our results clarify the origin of the relatively high frequency response in spin ice. They disclose unexpected physics and establish adiabatic susceptibility as a revealing characteristic of exotic spin systems.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Current page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet