Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr. Andreas Dopp

Visitor

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser fusion and extreme field physics
www.pulse.physik.uni-muenchen.de
cala-laser.de
  • About
  • Publications

Direct Observation of Plasma Waves and Dynamics Induced by Laser-Accelerated Electron Beams

Phys. Rev. X 9, 011046 (2019)

Authors:

M. F. Gilljohann, H. Ding, A. Döpp et al.

Abstract:

Plasma wakefield acceleration (PWFA) is a novel acceleration technique with promising prospects for both particle colliders and light sources. However, PWFA research has so far been limited to a few large- scale accelerator facilities worldwide. Here, we present first results on plasma wakefield generation using electron beams accelerated with a 100-TW-class Ti:sapphire laser. Because of their ultrashort duration and high charge density, the laser-accelerated electron bunches are suitable to drive plasma waves at electron densities in the order of 1019 cm−3. We capture the beam-induced plasma dynamics with femtosecond resolution using few-cycle optical probing and, in addition to the plasma wave itself, we observe a distinctive transverse ion motion in its trail. This previously unobserved phenomenon can be explained by the ponderomotive force of the plasma wave acting on the ions, resulting in a modulation of the plasma density over many picoseconds. Because of the scaling laws of plasma wakefield generation, results obtained at high plasma density using high-current laser-accelerated electron beams can be readily scaled to low-density systems. Laser-driven PWFA experiments can thus act as miniature models for their larger, conventional counterparts. Furthermore, our results pave the way towards a novel generation of laser-driven PWFA, which can potentially provide ultralow emittance beams within a compact setup.
More details from the publisher
Full PDF text

Dual-energy electron beams from a compact laser-driven accelerator

Nature Photonics, 13, 263–269 (2019)

Authors:

J. Wenz, A. Döpp et al.

Abstract:

Ultrafast pump–probe experiments open the possibility to track fundamental material behaviour, such as changes in electronic configuration, in real time. To date, most of these experiments are performed using an electron or a high-energy photon beam that is synchronized to an infrared laser pulse. Entirely new opportunities can be explored if not only a single, but multiple synchronized, ultrashort, high-energy beams are used. However, this requires advanced radiation sources that are capable of producing dual-energy electron beams, for example. Here, we demonstrate simultaneous generation of twin-electron beams from a single compact laser wakefield accelerator. The energy of each beam can be individually adjusted over a wide range and our analysis shows that the bunch lengths and their delay inherently amount to femtoseconds. Our proof-of-concept results demonstrate an elegant way to perform multi-beam experiments in the future on a laboratory scale.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet