Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Satellite image of storm Eunice over the UK

Shirin Ermis (she/her)

Graduate student - NERC DTP

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
shirin.ermis@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 113
shirin-ermis.github.io
  • About
  • Publications

Forecast-based attribution for midlatitude cyclones

Copernicus Publications (2025)

Authors:

Shirin Ermis, Nicholas Leach, Sarah Sparrow, Fraser Lott, Antje Weisheimer
More details from the publisher

Towards an operational forecast-based attribution system - beyond isolated events

Copernicus Publications (2025)

Authors:

Nicholas Leach, Shirin Ermis, Olivia Vashti Ayim, Sarah Sparrow, Fraser Lott, Linjing Zhou, Pandora Hope, Dann Mitchell, Antje Weisheimer, Myles Allen
More details from the publisher

Event attribution of a midlatitude windstorm using ensemble weather forecasts

Environmental Research: Climate IOP Publishing 3:3 (2024) 035001

Authors:

Shirin Ermis, Nicholas J Leach, Fraser Charles Lott, Sarah N Sparrow, Antje Weisheimer

Abstract:

The widespread destruction incurred by midlatitude storms every year makes it an imperative to study how storms change with climate. The impact of climate change on midlatitude windstorms, however, is hard to evaluate due to the small signals in variables such as wind speed, as well as the high resolutions required to represent the dynamic processes in the storms. Here, we assess how storm Eunice, which hit the UK in February 2022, was impacted by anthropogenic climate change using the ECMWF ensemble prediction system. This system was demonstrably able to predict the storm, significantly increasing our confidence in its ability to model the key physical processes and their response to climate change. Using modified greenhouse gas concentrations and changed initial conditions for ocean temperatures, we create two counterfactual scenarios of storm Eunice in addition to the forecast for the current climate. We compare the intensity and severity of the storm between the pre-industrial, current, and future climates. Our results robustly indicate that Eunice has become more intense with climate change and similar storms will continue to intensify with further anthropogenic forcing. These results are consistent across forecast lead times, increasing our confidence in them. Analysis of storm composites shows that this process is caused by increased vorticity production through increased humidity in the warm conveyor belt of the storm. This is consistent with previous studies on extreme windstorms. Our approach of combining forecasts at different lead times for event attribution enables combining event specificity and a focus on dynamic changes with the assessment of changing risks from windstorms. Further work is needed to develop methods to adjust the initial conditions of the atmosphere for the use in attribution studies using weather forecasts but we show that this approach is viable for reliable and fast attribution systems.
More details from the publisher
Details from ORA
More details

Modelling interannual variability in a tropical cyclone hazard model

Copernicus Publications (2022)

Authors:

Shirin Ermis, Ralf Toumi
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet