Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

New Metrics for Identifying Variables and Transients in Large Astronomical Surveys

The Astrophysical Journal American Astronomical Society 992:1 (2025) 109

Authors:

Shih Ching Fu, Arash Bahramian, Aloke Phatak, James CA Miller-Jones, Suman Rakshit, Alexander Andersson, Robert Fender, Patrick A Woudt

Abstract:

A key science goal of large sky surveys such as those conducted by the Vera C. Rubin Observatory and precursors to the Square Kilometre Array is the identification of variable and transient objects. One approach is analyzing time series of the changing brightness of sources, namely, light curves. However, finding adequate statistical representations of light curves is challenging because of the sparsity of observations, irregular sampling, and nuisance factors inherent in astronomical data collection. The wide diversity of objects that a large-scale survey will observe also means that making parametric assumptions about the shape of light curves is problematic. We present a Gaussian process (GP) regression approach for characterizing light-curve variability that addresses these challenges. Our approach makes no assumptions about the shape of a light curve and, therefore, is general enough to detect a range of variable and transient source types. In particular, we propose using the joint distribution of GP amplitude hyperparameters to distinguish variable and transient candidates from nominally stable ones and apply this approach to 6394 radio light curves from the ThunderKAT survey. We compare our results with two variability metrics commonly used in radio astronomy, namely ην and Vν, and show that our approach has better discriminatory power and interpretability. Finally, we conduct a rudimentary search for transient sources in the ThunderKAT data set to demonstrate how our approach might be used as an initial screening tool. Computational notebooks in Python and R are available to help deploy this framework to other surveys.
More details from the publisher
Details from ORA

Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-mass Black Hole A0620-00

The Astrophysical Journal American Astronomical Society 991:2 (2025) 157

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

Abstract:

We present new observations of the black hole X-ray binary A0620-00 using the Mid-Infrared (MIR) Instrument on the James Webb Space Telescope, during a state where the X-ray luminosity is 9 orders of magnitude below Eddington, and coordinated with radio, near-infrared, and optical observations. The goal is to understand the nature of the excess MIR emission originally detected by Spitzer redward of 8 μm. The stellar-subtracted MIR spectrum is well modeled by a power law with a spectral index of α = 0.72 ± 0.01, where the flux density scales with frequency as Fν ∝ να. The spectral characteristics, along with rapid variability—a 40% flux flare at 15 μm and 25% achromatic variability in the 5–12 μm range—rule out a circumbinary disk as the source of the MIR excess. The Low Resolution Spectrometer reveals a prominent emission feature at 7.5 μm, resulting from the blend of three hydrogen recombination lines. While the contribution from partially self-absorbed synchrotron radiation cannot be ruled out, we argue that thermal bremsstrahlung from a warm (a few tens of thousands of Kelvin) wind accounts for the MIR excess; the same outflow is responsible for the emission lines. The inferred mass outflow rate indicates that the system’s low luminosity is due to a substantial fraction of the mass supplied by the donor star being expelled through a wind rather than accreted onto the black hole.
More details from the publisher
Details from ORA

The connection between the fastest astrophysical jets and the spin axis of their black hole

Nature Astronomy Nature Research (2025)

Authors:

RP Fender, SE Motta

Abstract:

Abstract Astrophysical jets signpost the most extreme phenomena in the Universe. Despite a century of study, connections between the physics of black holes and the processes underpinning the formation and launch of these jets remain elusive. Here we present a statistically significant sample of transient jet speeds from stellar-mass black holes and neutron stars. The fastest jets are exclusively from black holes and propagate along a fixed axis across several ejection phases. This provides strong evidence that the most relativistic jets propagate along the spin axis of the black hole that launches them. However, we find no correlation between reported spin estimates and the jet speeds, indicating that some issues remain in connecting the theories of jet formation with spin measurements. By contrast, slower jets can be launched by both black holes and neutron stars and can change in direction or precess, indicating that they are launched from the accretion flow.
More details from the publisher
Details from ORA

Relativistic precessing jets powered by an accreting neutron star

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 544:1 (2025) L37-L44

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

Abstract:

Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least . The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to yr and , respectively, indicating precession in a different parameter space to similar known objects such as SS 433.
More details from the publisher
Details from ORA

The peculiar hard state behaviour of the black hole X-ray binary Swift J1727.8−1613

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 1803-1816

Authors:

AK Hughes, F Carotenuto, TD Russell, AJ Tetarenko, JCA Miller-Jones, RM Plotkin, A Bahramian, JS Bright, FJ Cowie, J Crook-Mansour, R Fender, JK Khaulsay, A Kirby, S Jones, M McCollough, R Rao, GR Sivakoff, SD Vrtilek, DRA Williams-Baldwin, CM Wood, D Altamirano, P Casella, N Castro Segura, S Corbel, S Motta

Abstract:

Tracking the correlation between radio and X-ray luminosities during black hole X-ray binary outbursts is a key diagnostic of the coupling between accretion inflows (traced by X-rays) and relativistic jet outflows (traced by radio). We present the radio–X-ray correlation of the black hole low-mass X-ray binary Swift J1727.8–1613 during its 2023–2024 outburst. Our observations span a broad dynamic range, covering 4 orders of magnitude in radio luminosity and 6.5 in X-ray luminosity. This source follows an unusually radio-quiet track, exhibiting significantly lower radio luminosities at a given X-ray luminosity than both the standard (radio-loud) track and most previously known radio-quiet systems. Across most of the considered distance range (–4.3 kpc), Swift J1727.8–1613 appears to be the most radio-quiet black hole binary identified to date. For distances kpc, while Swift J1727 becomes comparable to one other extremely radio-quiet system, its peak X-ray luminosity ( erg s) exceeds that of any previously reported hard-state black hole low-mass X-ray binary, emphasizing the extremity of this outburst. Additionally, for the first time in a radio-quiet system, we identify the onset of X-ray spectral softening to coincide with a change in trajectory through the radio–X-ray plane. We assess several proposed explanations for radio-quiet behaviour in black hole systems in light of this data set. As with other such sources, however, no single mechanism fully accounts for the observed properties, highlighting the importance of regular monitoring and the value of comprehensive (quasi-)simultaneous data-sets.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet