Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Large-scale radio bubbles around the black hole transient V4641 Sgr

Astronomy & Astrophysics EDP Sciences (2026)

Authors:

N Grollimund, S Corbel, R Fender, JH Matthews, I Heywood, FJ Cowie, AK Hughes, F Carotenuto, SE Motta, P Woudt

Abstract:

Black holes (BHs) in microquasars can launch powerful relativistic jets that have the capacity to travel up to several parsecs from the compact object and interact with the interstellar medium. Recently, the detection of large-scale very-high-energy (VHE) gamma-ray emission around the black hole transient V4641 Sgr and other BH-jet systems suggested that jets from microquasars may play an important role in the production of galactic cosmic rays. V4641 Sgr is known for its superluminal radio jet discovered in 1999, but no radio counterpart of a large-scale jet has been observed. The goal of this work is to search for a radio counterpart of the extended VHE source. We observed V4641 Sgr with the MeerKAT radio telescope at the and bands and produced deep maps of the field using high dynamic range techniques. L UHF We report the discovery of a large-scale (∼ 35 ), bow-tie-shaped, diffuse, radio structure around V4641 Sgr, with similar angular size to the extended X-ray emission discovered by XRISM. However, it is not spatially coincident with the extended VHE emission. After discussing the association of the structure with V4641 Sgr, we investigate the nature of the emission mechanism. We suggest that the bow-tie structure arose from the long-term action of large-scale jets or disk winds from V4641 Sgr. If the emission mechanism is of synchrotron origin, the radio/X-ray extended structure implies acceleration of electrons up to more than 100 as far as tens of parsecs from the black hole. pc TeV
More details from the publisher

Large-scale radio bubbles around the black hole transient V4641 Sgr

(2026)

Authors:

Noa Grollimund, Stà phane Corbel, Rob Fender, James H Matthews, Ian Heywood, Fraser J Cowie, Andrew K Hughes, Francesco Carotenuto, Sara E Motta, Patrick Woudt

Evidence of mutually exclusive outflow forms from a black hole X-ray binary

Nature Astronomy (2026) 1-9

Authors:

Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P Fender, Andrew J Young, Jakob van den Eijnden, Christopher S Reynolds, Andrew C Fabian, Julien N Girard, Joey Neilsen, James F Steiner, John A Tomsick, Stéphane Corbel, Andrew K Hughes

Abstract:

Accretion onto black holes often leads to the launch of outflows that substantially influence their surrounding environments. The two primary forms of these outflows are X-ray disk winds—hot, ionized gases ejected from the accretion disk—and relativistic jets, which are collimated streams of particles often expelled along the rotational axis of the black hole. While previous studies have revealed a general association between spectral states and different types of outflow, the physical mechanisms governing wind and jet formation remain debated. Here, using coordinated NICER and MeerKAT observations of the recurrent black hole X-ray binary 4U 1630–472, we identify a clear anti-correlation between X-ray disk winds and jets: during three recent outbursts, only one type of outflow is detected at a time. Notably, this apparent exclusivity occurs even as the overall accretion luminosity remains within the range expected for a standard thin disk, characteristic of the canonical soft state. These results suggest a competition between outflow channels that may depend on how the accretion energy is partitioned between the disk and the corona. Our findings provide observational constraints on jet and wind formation in X-ray binaries and offer a fresh perspective on the interplay between different modes of accretion-driven feedback.
More details from the publisher
More details

MeerKAT observations of white dwarf pulsars

Sissa Medialab Srl (2025) 061

Authors:

Emil Meintjes, PA Woudt, M Geyer, I Heywood, V Prayag, B Stappers, D Ah Buckley, M Caleb, R Fender, I Pelisoli
More details from the publisher

Kinematics show consistency between stellar mass and supermassive black hole parent population jet speeds

(2025)

Authors:

Clara Lilje, Rob Fender, James H Matthews
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet