A complex state transition from the black hole candidate swift J1753.5-0127
Monthly Notices of the Royal Astronomical Society 429:2 (2013) 1244-1257
Abstract:
We present our monitoring campaign of the outburst of the black hole candidate Swift J1753.5-0127, observed with the Rossi X-ray Timing Explorer and the Swift satellites. After ̃4.5 yr since its discovery, the source had a transition to the hard intermediate state. We performed spectral and timing studies of the transition showing that, unlike the majority of the transient black holes, the system did not go to the soft states but it returned to the hard state after a few months. During this transition Swift J1753.5-0127 features properties which are similar to those displayed by the black hole Cygnus X-1. We compared Swift J1753.5-0127 to one dynamically confirmed black hole and two neutron stars showing that its power spectra are in agreement with the binary hosting a black hole. We also suggest that the prolonged period at low flux that followed the initial flare is reminiscent of that observed in other X-ray binaries, as well as in cataclysmic variables. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Jet spectral breaks in black hole x-ray binaries
Monthly Notices of the Royal Astronomical Society 429:1 (2013) 815-832
Abstract:
In X-ray binaries, compact jets are known to commonly radiate at radio to infrared frequencies, whereas at optical to -ray energies, the contribution of the jet is debated. The total luminosity, and hence power of the jet, is critically dependent on the position of the break in its spectrum, between optically thick (self-absorbed) and optically thin synchrotron emission. This break, or turnover, has been reported in just one black hole X-ray binary (BHXB) thus far, GX 339-4, and inferred via spectral fitting in two others, A0620-00 and Cyg X-1. Here, we collect a wealth of multi-wavelength data from the outbursts of BHXBs during hard X-ray states, in order to search for jet breaks as yet unidentified in their spectral energy distributions. In particular, we report the direct detection of the jet break in the spectrum of V404 Cyg during its 1989 outburst, at b = (1.8 ± 0.3) × 1014 Hz (1.7 ± 0.2 μm). We increase the number of BHXBs with measured jet breaks from three to eight. Jet breaks are found at frequencies spanning more than two orders of magnitude, from b = (4.5 ± 0.8) × 1012 Hz for XTE J1118+480 during its 2005 outburst, to b > 4.7 × 1014 Hz for V4641 Sgr in outburst. A positive correlation between jet break frequency and luminosity is expected theoretically; b L ~0.5 ,jet if other parameters are constant. With constraints on the jet break in a total of 12 BHXBs including two quiescent systems, we find a large range of jet break frequencies at similar luminosities and no obvious global relation (but such a relation cannot be ruled out for individual sources). We speculate that different magnetic field strengths and/or different radii of the acceleration zone in the inner regions of the jet are likely to be responsible for the observed scatter between sources. There is evidence that the high-energy cooling break in the jet spectrum shifts from UV energies at LX ~ 10-8LEdd (implying the jet may dominate the X-ray emission in quiescence) to X-ray energies at ~10-3LEdd. Finally, we find that the jet break luminosity scales as L,jet L0.56±0.05 X (very similar to the radio-X-ray correlation), and radio-faint BHXBs have fainter jet breaks. In quiescence the jet break luminosity exceeds the X-ray luminosity. © 2012 The Authors.Differential Frequency-dependent Delay from the Pulsar Magnetosphere
(2013)
Automated rapid follow-up of swift Gamma-ray burst alerts at 15 GHz with the AMI large array
Monthly Notices of the Royal Astronomical Society 428:4 (2013) 3114-3120
Abstract:
We present 15-GHz follow-up radio observations of 11 Swift gamma-ray burst (GRB) sources, obtained with theArcminute Microkelvin Imager LargeArray (AMI-LA). The initial follow-up observation for each sourcewas made in a fully automated fashion; as a result four observations were initiated within 5 min of the GRB alert time stamp. These observations provide the first millijansky-level constraints on prolonged radio emission from GRBs within the first hour post-burst. While no radio emission within the first six hours after the GRB is detected in this preliminary analysis, radio afterglow is detected from one of the GRBs (GRB 120326A) on a time-scale of days. The observations were made as part of an ongoing programme to use AMI-LA as a systematic follow-up tool for transients at radio frequencies. In addition to the preliminary results, we explain how we have created an easily extensible automated follow-up system, describing new software tools developed for astronomical transient alert distribution, automatic requesting of target-of-opportunity observations and robotic control of the observatory. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Observational constraints on the powering mechanism of transient relativistic jets
(2013)