Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

ASTROPHYSICAL JOURNAL LETTERS 768:2 (2013) ARTN L35

Authors:

DM Russell, TD Russell, JCA Miller-Jones, K O'Brien, R Soria, GR Sivakoff, T Slaven-Blair, F Lewis, S Markoff, J Homan, D Altamirano, PA Curran, MP Rupen, TM Belloni, M Cadolle Bel, P Casella, S Corbel, V Dhawan, RP Fender, E Gallo, P Gandhi, S Heinz, EG Kording, HA Krimm, D Maitra, S Migliari, RA Remillard, CL Sarazin, T Shahbaz, V Tudose
More details from the publisher

Bright radio emission from an ultraluminous stellar-mass microquasar in M31

(2012)

Authors:

Matthew J Middleton, James CA Miller-Jones, Sera Markoff, Rob Fender, Martin Henze, Natasha Hurley-Walker, Anna MM Scaife, Timothy P Roberts, Dominic Walton, John Carpenter, Jean-Pierre Macquart, Geoffrey C Bower, Mark Gurwell, Wolfgang Pietsch, Frank Haberl, Jonathan Harris, Michael Daniel, Junayd Miah, Chris Done, John Morgan, Hugh Dickinson, Phil Charles, Vadim Burwitz, Massimo Della Valle, Michael Freyberg, Jochen Greiner, Margarita Hernanz, Dieter H Hartmann, Despina Hatzidimitriou, Arno Riffeser, Gloria Sala, Stella Seitz, Pablo Reig, Arne Rau, Marina Orio, David Titterington, Keith Grainge
More details from the publisher

The LOFAR radio environment

Astronomy and Astrophysics 549 (2012)

Authors:

AR Offringa, AG De Bruyn, S Zaroubi, G Van Diepen, O Martinez-Ruby, P Labropoulos, MA Brentjens, B Ciardi, S Daiboo, G Harker, V Jelić, S Kazemi, LVE Koopmans, G Mellema, VN Pandey, RF Pizzo, J Schaye, H Vedantham, V Veligatla, SJ Wijnholds, S Yatawatta, P Zarka, A Alexov, J Anderson, A Asgekar, M Avruch, R Beck, M Bell, MR Bell, M Bentum, G Bernardi, P Best, L Birzan, A Bonafede, F Breitling, JW Broderick, M Brüggen, H Butcher, J Conway, M De Vos, RJ Dettmar, J Eisloeffel, H Falcke, R Fender, W Frieswijk, M Gerbers, JM Griessmeier, AW Gunst, TE Hassall, G Heald, J Hessels, M Hoeft, A Horneffer, A Karastergiou, V Kondratiev, Y Koopman, M Kuniyoshi, G Kuper, P Maat, G Mann, J McKean, H Meulman, M Mevius, JD Mol, R Nijboer, J Noordam, M Norden, H Paas, M Pandey, A Polatidis, D Rafferty, S Rawlings, W Reich, HJA Röttgering, AP Schoenmakers, J Sluman, O Smirnov, C Sobey, B Stappers, M Steinmetz, J Swinbank, M Tagger, Y Tang, C Tasse, A Van Ardenne, W Van Cappellen, AP Van Duin, M Van Haarlem, J Van Leeuwen, RJ Van Weeren, R Vermeulen, C Vocks, RAMJ Wijers, M Wise, O Wucknitz

Abstract:

Aims. This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods. We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results. We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions. Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills. © 2012 ESO.
Details from ArXiV
More details from the publisher

First LOFAR observations of gamma-ray binaries

AIP Conference Proceedings 1505 (2012) 374-377

Authors:

B Marcote, M Ribó, JM Paredes, J Swinbank, J Broderick, R Fender, S Markoff, R Wijers

Abstract:

A few binary systems display High Energy (100 MeV-100 GeV) and/or Very High Energy (≳ 100 GeV) gamma-ray emission. These systems also display non-thermal radio emission+that can be resolved with long-baseline radio interferometers, revealing the presence of outflows. It is expected that at very low frequencies the synchrotron radio emission covers larger angular scales than has been reported up to now. Here we present preliminary results of the first deep radio observations of the gamma-ray binary LS I +61 303 with LOFAR, which is sensitive to extended structures on arcsecond to arcminute scales. © 2012 American Institute of Physics.
More details from the publisher
More details

The Co-ordinated Radio and Infrared Survey for High-Mass Star Formation - II. Source Catalogue

(2012)

Authors:

CR Purcell, MG Hoare, WD Cotton, SL Lumsden, JS Urquhart, C Chandler, EB Churchwell, P Diamond, SM Dougherty, RP Fender, G Fuller, ST Garrington, TM Gledhill, PF Goldsmith, L Hindson, JM Jackson, SE Kurtz, J Marti, TJT Moore, LG Mundy, TWB Muxlow, RD Oudmaijer, JD Pandian, JM Paredes, DS Shepherd, S Smethurst, RE Spencer, MA Thompson, G Umana, AA Zijlstra
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 99
  • Page 100
  • Page 101
  • Page 102
  • Current page 103
  • Page 104
  • Page 105
  • Page 106
  • Page 107
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet