Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Paul Fendley

Professor and Senior Research Fellow, All Souls College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
paul.fendley@physics.ox.ac.uk
Telephone: 01865 (2)73957
Rudolf Peierls Centre for Theoretical Physics, room 70.32
  • About
  • Publications

Order parameter statistics in the critical quantum Ising chain.

Physical review letters 100:16 (2008) 165706

Authors:

Austen Lamacraft, Paul Fendley

Abstract:

The probability distribution of the order parameter is expected to take a universal scaling form at a phase transition. In a spin system at a quantum critical point, this corresponds to universal statistics in the distribution of the total magnetization in the low-lying states. We obtain this scaling function exactly for the ground state and first excited state of the critical quantum Ising spin chain. This is achieved through a remarkable relation to the partition function of the anisotropic Kondo problem, which can be computed by exploiting the integrability of the system.
More details from the publisher
More details
More details

Critical points in coupled Potts models and critical phases in coupled loop models

(2008)

Authors:

Paul Fendley, Jesper Lykke Jacobsen
More details from the publisher

Order parameter statistics in the critical quantum Ising chain

(2008)

Authors:

Austen Lamacraft, Paul Fendley
More details from the publisher

Tutte chromatic identities from the Temperley-Lieb algebra

(2007)

Authors:

Paul Fendley, Vyacheslav Krushkal
More details from the publisher

Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice.

Physical review. E, Statistical, nonlinear, and soft matter physics 75:5 Pt 1 (2007) 051120

Authors:

Paul Fendley, Joel E Moore, Cenke Xu

Abstract:

We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k{B} approximately 0.3661 ... centered and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet