Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Effect of Wave Dark Matter on Equal Mass Black Hole Mergers.

Physical review letters 132:21 (2024) 211401

Authors:

Josu C Aurrekoetxea, Katy Clough, Jamie Bamber, Pedro G Ferreira

Abstract:

For dark matter to be detectable with gravitational waves from binary black holes, it must reach higher than average densities in their vicinity. In the case of light (wavelike) dark matter, the density of dark matter between the binary can be significantly enhanced by accretion from the surrounding environment. Here we show that the resulting dephasing effect on the last ten orbits of an equal mass binary is maximized when the Compton wavelength of the scalar particle is comparable to the orbital separation, 2π/μ∼d. The phenomenology of the effect is different from the channels that are usually discussed, where dynamical friction (along the orbital path) and radiation of energy and angular momentum drive the dephasing, and is rather dominated by the radial force (the spacetime curvature in the radial direction) towards the overdensity between the black holes. While our numerical studies limit us to scales of the same order, this effect may persist at larger separations and/or particle masses, playing a significant role in the merger history of binaries.
More details from the publisher
More details
More details

Optimal inflationary potentials

Physical Review D American Physical Society 109:8 (2024) 83524

Authors:

Tomás Sousa, Deaglan Bartlett, Harry Desmond, Pedro Ferreira

Abstract:

Inflation is a highly favored theory for the early Universe. It is compatible with current observations of the cosmic microwave background and large scale structure and is a driver in the quest to detect primordial gravitational waves. It is also, given the current quality of the data, highly underdetermined with a large number of candidate implementations. We use a new method in symbolic regression to generate all possible simple scalar field potentials for one of two possible basis sets of operators. Treating these as single-field, slow-roll inflationary models we then score them with an information-theoretic metric ("minimum description length") that quantifies their efficiency in compressing the information in current data. We explore two possible priors on the parameter space of potentials, one related to the functions' structural complexity and one that uses a Katz back-off language model to prefer functions that may be theoretically motivated. This enables us to identify the inflaton potentials that optimally balance simplicity with accuracy at explaining current data, which may subsequently find theoretical motivation. Our exploratory study opens the door to extraction of fundamental physics directly from data, and may be augmented with more refined theoretical priors in the quest for a complete understanding of the early Universe.
More details from the publisher
Details from ORA
More details

Euclid preparation

Astronomy & Astrophysics EDP Sciences 683 (2024) a17

Authors:

K Tanidis, VF Cardone, M Martinelli, I Tutusaus, S Camera, N Aghanim, A Amara, S Andreon, N Auricchio, M Baldi, S Bardelli, E Branchini, M Brescia, J Brinchmann, V Capobianco, C Carbone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, R Cledassou, G Congedo, L Conversi, Y Copin, L Corcione, F Courbin, HM Courtois, A Da Silvay, H Degaudenzi, J Dinis, F Dubath, X Dupac, S Dusini, M Farina, S Farrens, S Ferriol, P Fosalba, M Frailis, E Franceschi, M Fumana, S Galeotta, B Garilli, W Gillard, B Gillis, C Giocoli, A Grazian, F Grupp, L Guzzo, SVH Haugan, W Holmes, I Hook, A Hornstrup, K Jahnke, B Joachimi, E Keihanen, S Kermiche, A Kiessling, M Kunz, H Kurki-Suonio, PB Lilje, V Lindholm, I Lloro, E Maiorano, O Mansutti, O Marggraf, K Markovic, N Martinet, F Marulli, R Massey, S Maurogordato, E Medinaceli, S Mei, M Meneghetti, G Meylan, M Moresco, L Moscardini, E Munari, S-M Niemi, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, JE Pollack, M Poncet, LA Popa, F Raison, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, R Saglia, D Sapone, B Sartoris, M Schirmer, P Schneider, A Secroun, G Seidel, S Serrano, C Sirignano, G Sirri, L Stanco, P Tallada-Crespí, AN Taylor, I Tereno, R Toledo-Moreo, F Torradeflot, EA Valentijn, L Valenziano, T Vassallo, A Veropalumbo, Y Wang, J Weller, G Zamorani, J Zoubian, E Zucca, A Biviano, A Boucaud, E Bozzo, C Colodro-Conde, D Di Ferdinando, R Farinelli, J Graciá-Carpio, S Marcin, N Mauri, V Scottez, M Tenti, A Tramacere, Y Akrami, V Allevato, C Baccigalupi, A Balaguera-Antolínez, M Ballardini, D Benielli, F Bernardeau, S Borgani, AS Borlaff, C Burigana, R Cabanac, A Cappi, CS Carvalho, G Castignani, T Castro, G Cañas-Herrera, KC Chambers, AR Cooray, J Coupon, A Díaz-Sánchez, S Davini, S de la Torre, G De Lucia, G Desprez, S Di Domizio, H Dole, JA Escartin Vigo, S Escoffier, PG Ferreira, I Ferrero, F Finelli, L Gabarra, J García-Bellido, E Gaztanaga, F Giacomini, G Gozaliasl, H Hildebrandt, S Ilić, JJE Kajava, V Kansal, CC Kirkpatrick, L Legrand, A Loureiro, J Macias-Perez, M Magliocchetti, G Mainetti, R Maoli, CJAP Martins, S Matthew, L Maurin, RB Metcalf, M Migliaccio, P Monaco, G Morgante, S Nadathur, AA Nucita, M Pöntinen, L Patrizii, A Pezzotta, V Popa, D Potter, AG Sánchez, Z Sakr, JA Schewtschenko, A Schneider, M Sereno, P Simon, A Spurio Mancini, J Steinwagner, M Tewes, R Teyssier, S Toft, J Valiviita, M Viel, L Linke
More details from the publisher
More details

syren-halofit: A fast, interpretable, high-precision formula for the $\Lambda$CDM nonlinear matter power spectrum

(2024)

Authors:

Deaglan J Bartlett, Benjamin D Wandelt, Matteo Zennaro, Pedro G Ferreira, Harry Desmond
More details from the publisher
Details from ArXiV

LimberJack.jl: auto-differentiable methods for angular power spectra analyses

The Open Journal of Astrophysics Maynooth Academic Publishing 7 (2024)

Authors:

Jaime Ruiz-Zapatero, David Alonso, Carlos Garcia-Garcia, Andrina Nicola, Arrykrishna Mootoovaloo, Jamie M Sullivan, Marco Bonici, Pedro Ferreira

Abstract:

We present LimberJack.jl, a fully auto-differentiable code for cosmological analyses of 2 point auto- and cross-correlation measurements from galaxy clustering, CMB lensing and weak lensing data written in Julia. Using Julia’s auto-differentiation ecosystem, LimberJack.jl can obtain gradients for its outputs an order of magnitude faster than traditional finite difference methods. This makes LimberJack.jl greatly synergistic with gradient-based sampling methods, such as Hamiltonian Monte Carlo, capable of efficiently exploring parameter spaces with hundreds of dimensions. We first prove LimberJack.jl’s reliability by reanalysing the DES Y1 3×2-point data. We then showcase its capabilities by using a O(100) parameters Gaussian Process to reconstruct the cosmic growth from a combination of DES Y1 galaxy clustering and weak lensing data, eBOSS QSO’s, CMB lensing and redshift-space distortions. Our Gaussian process reconstruction of the growth factor is statistically consistent with the ΛCDM Planck 2018 prediction at all redshifts. Moreover, we show that the addition of RSD data is extremely beneficial to this type of analysis, reducing the uncertainty in the reconstructed growth factor by 20% on average across redshift. LimberJack.jl is a fully open-source project available on Julia’s general repository of packages and GitHub.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet