Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Einstein's Theory of Gravity and the Problem of Missing Mass

(2009)

Authors:

Pedro G Ferreira, Glenn Starkmann
More details from the publisher

Einstein's Theory of Gravity and the Problem of Missing Mass

ArXiv 0911.1212 (2009)

Authors:

Pedro G Ferreira, Glenn Starkmann

Abstract:

The observed matter in the universe accounts for just 5 percent of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise -- that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter.
Details from ArXiV
More details from the publisher
More details
More details

Errors in Estimating Omega_Lambda due to the Fluid Approximation

(2009)

Authors:

Timothy Clifton, Pedro G Ferreira
More details from the publisher

Errors in Estimating Omega_Lambda due to the Fluid Approximation

ArXiv 0908.4488 (2009)

Authors:

Timothy Clifton, Pedro G Ferreira

Abstract:

The matter content of the Universe is strongly inhomogeneous on small scales. Motivated by this fact, we consider a model of the Universe that has regularly spaced discrete masses, rather than a continuous fluid. The optical properties of such space-times can differ considerably from the continuous fluid case, even if the 'average' dynamics are the same. We show that these differences have consequences for cosmological parameter estimation, and that fitting to recent supernovae observations gives a correction to the inferred value of Omega_Lambda of ~10%.
Details from ArXiV
More details from the publisher
More details

Archipelagian Cosmology: Dynamics and Observables in a Universe with Discretized Matter Content

(2009)

Authors:

Timothy Clifton, Pedro G Ferreira
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet