Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Deterministic Motif Mining in Protein Databases

Chapter in Data Warehousing and Mining, IGI Global (2008) 1722-1746

Authors:

John Wang, Pedro Gabriel Ferreira, Paulo Jorge Azevedo
More details from the publisher

Clover-measuring the CMB B-mode polarisation

Proceedings of the Eighteenth International Symposium on Space Terahertz Technology 2007, ISSTT 2007 (2007) 238-243

Authors:

CE North, PAR Ade, MD Audley, C Baines, RA Battye, ML Brown, P Cabella, PG Calisse, AD Challinor, WD Duncan, P Ferreira, WK Gear, D Glowacka, DJ Goldie, PK Grimes, M Halpern, V Haynes, GC Hilton, KD Irwin, BR Johnson, ME Jones, AN Lasenby, PJ Leahy, J Leech, S Lewis, B Maffei, L Martinis, P Mauskopf, SJ Melhuish, D O'Dea, SM Parsley, L Piccirillo, G Pisano, CD Reintsema, G Savini, R Sudiwala, D Sutton, AC Taylor, G Teleberg, D Titterington, V Tsaneva, C Tucker, R Watson, S Withington, G Yassin, J Zhang

Abstract:

We describe the objectives, design and predicted performance of Clover, a fully-funded, UK-led experiment to measure the B-mode polarisation of the Cosmic Microwave Background (CMB). Three individual telescopes will operate at 97, 150 and 225 GHz, each populated by up to 256 horns. The detectors, TES bolometers, are limited by unavoidable photon noise, and coupled to an optical design which gives very low systematic errors, particularly in cross-polarisation. The telescopes will sit on three-axis mounts on a site in the Atacama Desert. The angular resolution of around 8 ́ and sky coverage of around 1000 deg2 provide multipole coverage of 20<ℓ<1000. Combined with the high sensitivity, this should allow the B-mode signal to be measured (or constrained) down to a level corresponding to a tensor-to-scalar ratio of r = 0.01, providing the emission from polarised foregrounds can be subtracted. This in turn will allow constraints to be placed on the energy scale of inflation, providing an unprecedented insight into the early history of the Universe.

Evaluating deterministic motif significance measures in protein databases.

Algorithms for molecular biology : AMB 2 (2007) 16

Authors:

Pedro Gabriel Ferreira, Paulo J Azevedo

Abstract:

Background

Assessing the outcome of motif mining algorithms is an essential task, as the number of reported motifs can be very large. Significance measures play a central role in automatically ranking those motifs, and therefore alleviating the analysis work. Spotting the most interesting and relevant motifs is then dependent on the choice of the right measures. The combined use of several measures may provide more robust results. However caution has to be taken in order to avoid spurious evaluations.

Results

From the set of conducted experiments, it was verified that several of the selected significance measures show a very similar behavior in a wide range of situations therefore providing redundant information. Some measures have proved to be more appropriate to rank highly conserved motifs, while others are more appropriate for weakly conserved ones. Support appears as a very important feature to be considered for correct motif ranking. We observed that not all the measures are suitable for situations with poorly balanced class information, like for instance, when positive data is significantly less than negative data. Finally, a visualization scheme was proposed that, when several measures are applied, enables an easy identification of high scoring motifs.

Conclusion

In this work we have surveyed and categorized 14 significance measures for pattern evaluation. Their ability to rank three types of deterministic motifs was evaluated. Measures were applied in different testing conditions, where relations were identified. This study provides some pertinent insights on the choice of the right set of significance measures for the evaluation of deterministic motifs extracted from protein databases.
More details from the publisher
More details

On the growth of structure in theories with a dynamical preferred frame

(2007)

Authors:

TG Zlosnik, PG Ferreira, GD Starkman
More details from the publisher

On the growth of structure in theories with a dynamical preferred frame

ArXiv 0711.0520 (2007)

Authors:

TG Zlosnik, PG Ferreira, GD Starkman

Abstract:

We study the cosmological stability of a class of theories with a dynamical preferred frame. For a range of actions, we find cosmological solutions which are compatible with observations of the recent history of the Universe: a matter dominated era followed by accelerated expansion. We then study the evolution of linear perturbations on these backgrounds and find conditions on the parameters of the theory which allow for the growth of structure sourced by the new degrees of freedom.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet