Living in a void: testing the Copernican principle with distant supernovae.
Phys Rev Lett 101:13 (2008) 131302
Abstract:
We show that the local redshift dependence of the luminosity distance can be used to test the Copernican principle that we are not in a central or otherwise special region of the Universe. Future surveys of type Ia supernovae that focus on a redshift range of approximately 0.1-0.4 will be ideally suited to observationally determine the validity of the Copernican principle on new scales, as well as probing the degree to which dark energy must be considered a necessary ingredient in the Universe.The Cℓ over experiment
Proceedings of SPIE - The International Society for Optical Engineering 7020 (2008)
Abstract:
CℓOVER is a multi-frequency experiment optimised to measure the Cosmic Microwave Background (CMB) polarization, in particular the B-mode component. CℓOVER comprises two instruments observing respectively at 97 GHz and 150/225 GHz. The focal plane of both instruments consists of an array of corrugated feed-horns coupled to TES detectors cooled at 100 mK. The primary science goal of CℓOVER is to be sensitive to gravitational waves down to r ∼ 0.03 (at 3σ) in two years of operations.The CℓOVER experiment
Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 7020 (2008) 70201e-70201e-10
Map-making in small field modulated CMB polarisation experiments: approximating the maximum-likelihood method
(2008)