MAXIMA: A balloon-borne cosmic microwave background anisotropy experiment
Review of Scientific Instruments 77:7 (2006)
Abstract:
We describe the Millimeter wave Anisotropy experiment IMaging Array (MAXIMA), a balloon-borne experiment which measured the temperature anisotropy of the cosmic microwave background (CMB) on angular scales of 10° to 5°. MAXIMA mapped the CMB using 16 bolometric detectors in spectral bands centered at 150, 240, and 410 GHz, with 10' resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy was ∼40 /uK √s. The bolometric detectors, which were cooled to 100 mK, were a prototype of the detectors which will be used on the Planck Surveyor Satellite of the European Space Agency. Systematic parasitic contributions were controlled by using four uncorrelated spatial modulations, thorough cross-linking, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Pointing reconstruction was accurate to 1′, and absolute calibration was better than 4%. Two MAXIMA flights with more than 8.5 h of CMB observations have mapped a total of 300 deg 2 of the sky in regions of negligible known foreground emission. MAXIMA results have been released in previous publications and shown to be consistent with the Wilkinson Microwave Anisotropy Probe. MAXIMA I maps, power spectra, and correlation matrices are publicly available at http://cosmology.berkeley.edu/maxima. © 2006 American Institute of Physics.Modifying gravity with the Aether: an alternative to Dark Matter
(2006)
Modifying gravity with the Aether: an alternative to Dark Matter
ArXiv astro-ph/0607411 (2006)
Abstract:
There is evidence that Newton and Einstein's theories of gravity cannot explain the dynamics of a universe made up solely of baryons and radiation. To be able to understand the properties of galaxies, clusters of galaxies and the universe on the whole it has become commonplace to invoke the presence of dark matter. An alternative approach is to modify the gravitational field equations to accommodate observations. We propose a new class of gravitational theories in which we add a new degree of freedom, the Aether, in the form of a vector field that is coupled covariantly, but non-minimally, with the space-time metric. We explore the Newtonian and non-Newtonian limits, discuss the conditions for these theories to be consistent and explore their effect on cosmology.The Vector-Tensor nature of Bekenstein's relativistic theory of Modified Gravity
ArXiv gr-qc/0606039 (2006)
Abstract:
Bekenstein's theory of relativistic gravity is conventionally written as a bi-metric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this comment we show that the theory can be re-written as Vector-Tensor theory akin to Einstein-Aether theories with non-canonical kinetic terms. We discuss some of the implications of this equivalence.The Vector-Tensor nature of Bekenstein's relativistic theory of Modified Gravity
(2006)