Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Christopher Foot

Professor of Physics

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Ultracold quantum matter
  • AION/Magis
Christopher.Foot@physics.ox.ac.uk
Telephone: 01865 (2)72256
Clarendon Laboratory, room 161
  • About
  • Publications

Strong evaporative cooling towards Bose-Einstein condensation of a magnetically trapped caesium gas

Journal of Optics B: Quantum and Semiclassical Optics 5:2 (2003)

Authors:

AM Thomas, S Hopkins, SL Cornish, CJ Foot

Abstract:

We have evaporatively cooled caesium atoms in a magnetic trap to temperatures as low as 8 nK and produced a final phase space density within a factor of four of that required for the onset of Bose-Einstein condensation. At the end of the forced radio-frequency evaporation, 1500 atoms in the F = 3, mF = -3 state remain in the magnetic trap. We observe a decrease in the one-dimensional evaporative cooling efficiency at very low temperatures as the trapped sample enters the collisionally thick (hydrodynamic) regime. To alleviate this problem we propose a modified trapping scheme where three-dimensional evaporation is possible. In addition, we report measurements of the two-body inelastic collision rates for caesium atoms as a function of magnetic field. We confirm the positions, with reduced uncertainties, of three previously identified resonances at magnetic fields of 108.87(6), 118.46(3) and 133.52(3) G.
More details from the publisher

Strong evaporative cooling towards Bose-Einstein condensation of a magnetically trapped caesium gas

J OPT B-QUANTUM S O 5:2 (2003) S107-S111

Authors:

AM Thomas, S Hopkins, SL Cornish, CJ Foot

Abstract:

We have evaporatively cooled caesium atoms in a magnetic trap to temperatures as low as 8 nK and produced a final phase space density within a factor of four of that required for the onset of Bose-Einstein condensation. At the end of the forced radio-frequency evaporation, 1500 atoms in the F = 3, m(F) = -3 state remain in the magnetic trap. We observe a decrease in the one-dimensional evaporative cooling efficiency at very low temperatures as the trapped sample enters the collisionally thick (hydrodynamic) regime. To alleviate this problem we propose a modified trapping scheme where three-dimensional evaporation is possible. In addition, we report measurements of the two-body inelastic collision rates for caesium atoms as a function of magnetic field. We confirm the positions, with reduced uncertainties, of three previously identified resonances at magnetic fields of 108.87(6), 118.46(3) and 133.52(3) G.
More details from the publisher

The evaporative cooling of a gas of caesium atoms in the hydrodynamic regime

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 36:16 (2003) PII S0953-4075(03)64697-3

Authors:

ZY Ma, AM Thomas, CJ Foot, SL Cornish
More details from the publisher

The Experimental Observation of a Superfluid Gyroscope in a dilute Bose Condensed Gas

(2002)

Authors:

E Hodby, SA Hopkins, G Hechenblaikner, NL Smith, CJ Foot
More details from the publisher

OBSERVATION OF IRROTATIONAL FLOW AND VORTICITY IN A BOSE-EINSTEIN CONDENSATE

World Scientific Publishing (2002) 297-300

Authors:

G HECHENBLAIKNER, E HODBY, SA HOPKINS, O MARAGÒ, CJ FOOT
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet