Detecting Phase Coherence of 2D Bose Gases via Noise Correlations
Physical Review Letters American Physical Society (APS) 134:18 (2025) 183407
Terrestrial Very-Long-Baseline Atom Interferometry: summary of the second workshop
EPJ Quantum Technology SpringerOpen 12:1 (2025) 42
Abstract:
This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024 (Second Terrestrial Very-Long-Baseline Atom Interferometry Workshop, Imperial College, April 2024), building on the initial discussions during the inaugural workshop held at CERN in March 2023 (First Terrestrial Very-Long-Baseline Atom Interferometry Workshop, CERN, March 2023). Like the summary of the first workshop (Abend et al. in AVS Quantum Sci. 6:024701, 2024), this document records a critical milestone for the international atom interferometry community. It documents our concerted efforts to evaluate progress, address emerging challenges, and refine strategic directions for future large-scale atom interferometry projects. Our commitment to collaboration is manifested by the integration of diverse expertise and the coordination of international resources, all aimed at advancing the frontiers of atom interferometry physics and technology, as set out in a Memorandum of Understanding signed by over 50 institutions (Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study).CNN-Based Vortex Detection in Atomic 2D Bose Gases in the Presence of a Phononic Background
Machine Learning: Science and Technology IOP Publishing (2025)
Abstract:
<jats:title>Abstract</jats:title> <jats:p>Quantum vortices play a crucial role in both equilibrium and dynamical phenomena in two-dimensional (2D) superfluid systems. Experimental detection of these excitations in 2D ultracold atomic gases typically involves examining density depletions in absorption images, however the presence of a significant phononic background renders the problem challenging, beyond the capability of simple algorithms or the human eye. Here, we utilize a convolutional neural network (CNN) to detect vortices in the presence of strong long- and intermediate-length scale density modulations in finite-temperature 2D Bose gases. We train the model on datasets obtained from ab initio Monte Carlo simulations using the classical-field method for density and phase fluctuations, and Gross-Pitaevskii simulation of realistic expansion dynamics. We use the model to analyze experimental images and benchmark its performance by comparing the results to the matter-wave interferometric detection of vortices, confirming the observed scaling of vortex density across the Berezinskii-Kosterlitz-Thouless (BKT) critical point. The combination of a relevant simulation pipeline with machine-learning methods is a key development towards the comprehensive understanding of complex vortex-phonon dynamics in out-of-equilibrium 2D quantum systems.</jats:p>Single-photon large-momentum-transfer atom interferometry scheme for Sr or Yb atoms with application to determining the fine-structure constant
Physical Review A: Atomic, Molecular and Optical Physics American Physical Society 110:5 (2024) 053309
Abstract:
The leading experimental determinations of the fine-structure constant 𝛼 currently rely on atomic photon-recoil measurements from Ramsey-Bordé atom interferometry with large-momentum transfer to provide an absolute mass measurement. We propose an experimental scheme for an intermediate-scale differential atom interferometer to measure the photon recoil of neutral atomic species with a single-photon optical clock transition. We calculate trajectories for our scheme that optimize the recoil phase while nullifying the undesired gravity-gradient phase by considering independently launching two clouds of ultracold atoms with the appropriate initial conditions. For Sr and Yb, we find an atom interferometer of height 3 m to be sufficient for an absolute mass measurement precision of 𝛥𝑚/𝑚∼1×10−11 with current technology. Such a precise measurement would halve the current uncertainty in 𝛼 — an uncertainty that would no longer be limited by an absolute mass measurement. The removal of this limitation would allow the current uncertainty in 𝛼 to be reduced by a factor of 10 by corresponding improvements in relative mass measurements, thus paving the way for higher-precision tests of the standard model of particle physics.Robust design and performance of NPL Cs fountain clocks
Journal of Physics Conference Series IOP Publishing 2889:1 (2024) 012020