Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Christopher Foot

Professor of Physics

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Ultracold quantum matter
  • AION/Magis
Christopher.Foot@physics.ox.ac.uk
Telephone: 01865 (2)72256
Clarendon Laboratory, room 161
  • About
  • Publications

Calculation of the efficiencies and phase shifts associated with an adiabatic transfer atom interferometer

Quantum and Semiclassical Optics Journal of the European Optical Society Part B IOP Publishing 8:3 (1996) 641

Authors:

G Morigi, P Featonby, G Summy, C Foot
More details from the publisher

Direct simulation of evaporative cooling

Journal of Physics B: Atomic, Molecular and Optical Physics 29:8 (1996)

Authors:

H Wu, CJ Foot

Abstract:

We have simulated the evaporative cooling of trapped atoms using a very efficient method originally introduced for the study of molecular gas dynamics. This straightforward and intuitive method allows the dynamics of the evaporative cooling process to be studied and requires fewer simplifications and assumptions than other methods. In particular, the method is not restricted to distributions close to equilibrium and therefore it can model accurately rapid forced evaporative cooling, which is an important technique for cooling trapped atoms. We present the results of simulations for forced evaporative cooling in one, two and three dimensions.
More details from the publisher
More details

High-density trapping of cesium atoms in a dark magneto-optical trap.

Phys Rev A 53:3 (1996) 1702-1714

Authors:

CG Townsend, NH Edwards, KP Zetie, CJ Cooper, J Rink, CJ Foot
More details from the publisher
More details

Direct simulation of evaporative cooling

Technical Digest - European Quantum Electronics Conference (1996) 57

Authors:

H Wu, CJ Foot

Abstract:

Evaporative cooling is a simple and very effective way of cooling atoms in a magnetic trap. A modelling method for this technique was developed by considering the physics of gas flow. Using this method, cross-dimensional mixing in homogeneous and inhomogeneous gases and continuous cuts in two and three dimensions are studied. The two-dimensional cut model is similar to the evaporative process in a TOP trap because atoms in this trap are removed in the basis of their radial positions. Initially, a two dimension cut retains atoms in the trap but atom loss becomes greater than with a three dimension cut because the velocity component along z is relatively hot and gives up more energetic atoms.

Modeling evaporative cooling in phase space using a direct simulation of the Monte Carlo method

Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series 9 (1996) 228-229

Authors:

H Wu, CJ Foot

Abstract:

A simulation of the forced evaporative cooling process is made using a classical Monte Carlo method. This powerful method is complementary to other recent studies of evaporative cooling and does not need the assumption that a gas has recovered thermal equilibrium after each cut of potential well or the assumption of sufficient ergodicity. Direct simulation by Bird's method can be done in any arbitrary potential and can be used to study the deviation between three components of translational temperature during forced evaporation.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet