Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Carlos Garcia-Garcia

Beecroft Fellow

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
carlos.garcia-garcia@physics.ox.ac.uk
Telephone: 01865 283015
Denys Wilkinson Building, room 555E
GitLab
GitHub
Publications (InspireHEP)
  • About
  • Publications

EMUFLOW: normalizing flows for joint cosmological analysis

Monthly Notices of the Royal Astronomical Society Oxford University Press 536:1 (2024) 190-202

Authors:

Arrykrishna Mootoovaloo, Carlos Garcia-Garcia, David Alonso, Jaime Ruiz-Zapatero

Abstract:

Given the growth in the variety and precision of astronomical data sets of interest for cosmology, the best cosmological constraints are invariably obtained by combining data from different experiments. At the likelihood level, one complication in doing so is the need to marginalize over large-dimensional parameter models describing the data of each experiment. These include both the relatively small number of cosmological parameters of interest and a large number of ‘nuisance’ parameters. Sampling over the joint parameter space for multiple experiments can thus become a very computationally expensive operation. This can be significantly simplified if one could sample directly from the marginal cosmological posterior distribution of preceding experiments, depending only on the common set of cosmological parameters. We show that this can be achieved by emulating marginal posterior distributions via normalizing flows. The resulting trained normalizing flow models can be used to efficiently combine cosmological constraints from independent data sets without increasing the dimensionality of the parameter space under study. The method is able to accurately describe the posterior distribution of real cosmological data sets, as well as the joint distribution of different data sets, even when significant tension exists between experiments. The resulting joint constraints can be obtained in a fraction of the time it would take to combine the same data sets at the level of their likelihoods. We construct normalizing flow models for a set of public cosmological data sets of general interests and make them available, together with the software used to train them, and to exploit them in cosmological parameter inference.
More details from the publisher
Details from ORA

Assessment of gradient-based samplers in standard cosmological likelihoods

Monthly Notices of the Royal Astronomical Society Oxford University Press 534:3 (2024) stae2138

Authors:

Arrykrishna Mootoovaloo, Jaime Ruiz-Zapatero, Carlos Garcia-Garcia, David Alonso

Abstract:

We assess the usefulness of gradient-based samplers, such as the no-U-turn sampler (NUTS), by comparison with traditional Metropolis–Hastings (MH) algorithms, in tomographic 3 × 2 point analyses. Specifically, we use the Dark Energy Survey (DES) Year 1 data and a simulated dataset for the Large Synoptic Survey Telescope (LSST) survey as representative examples of these studies, containing a significant number of nuisance parameters (20 and 32, respectively) that affect the performance of rejection-based samplers. To do so, we implement a differentiable forward model using JAX-COSMO, and we use it to derive parameter constraints from both data sets using the NUTS algorithm implemented in NUMPYRO, and the Metropolis–Hastings algorithm as implemented in COBAYA. When quantified in terms of the number of effective number of samples taken per likelihood evaluation, we find a relative efficiency gain of O(10) in favour of NUTS. However, this efficiency is reduced to a factor ∼ 2 when quantified in terms of computational time, since we find the cost of the gradient computation (needed by NUTS) relative to the likelihood to be ∼ 4.5 times larger for both experiments. We validate these results making use of analytical multivariate distributions (a multivariate Gaussian and a Rosenbrock distribution) with increasing dimensionality. Based on these results, we conclude that gradient-based samplers such as NUTS can be leveraged to sample high-dimensional parameter spaces in Cosmology, although the efficiency improvement is relatively mild for moderate (O(50)) dimension numbers, typical of tomographic large-scale structure analyses.
More details from the publisher
Details from ORA

$\mathtt{emuflow}$: Normalising Flows for Joint Cosmological Analysis

(2024)

Authors:

Arrykrishna Mootoovaloo, Carlos García-García, David Alonso, Jaime Ruiz-Zapatero
More details from the publisher
Details from ArXiV

Scant evidence for thawing quintessence

ArXiv 2408.17318 (2024)

Authors:

William J Wolf, Carlos García-García, Deaglan J Bartlett, Pedro G Ferreira
Details from ArXiV

X-Ray-Cosmic-Shear Cross-Correlations: First Detection and Constraints on Baryonic Effects.

Physical review letters American Physical Society (APS) 133:5 (2024) 51001

Authors:

Tassia Ferreira, David Alonso, Carlos Garcia-Garcia, Nora Elisa Chisari

Abstract:

We report the first detection, at very high significance (23σ), of the cross-correlation between cosmic shear and the diffuse x-ray background, using data from the Dark Energy Survey and the ROSAT satellite. The x-ray cross-correlation signal is sensitive to the distribution of the surrounding gas in dark matter halos. This allows us to use our measurements to place constraints on key physical parameters that determine the impact of baryonic effects in the matter power spectrum. In particular, we determine the mass of halos in which feedback has expelled half of their gas content on average to be log_{10}(M_{c}/M_{⊙})=13.643_{-0.12}^{+0.081} and the polytropic index of the gas to be Γ=1.231_{-0.011}^{+0.015}. This represents a first step in the direct use of x-ray cross-correlations to obtain improved constraints on cosmology and the physics of the intergalactic gas.
More details from the publisher
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet