Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Header image

Carlos Garcia-Garcia

Beecroft Fellow

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
carlos.garcia-garcia@physics.ox.ac.uk
Telephone: 01865 283015
Denys Wilkinson Building, room 555E
GitLab
GitHub
Publications (InspireHEP)
  • About
  • Publications

Combining cosmic shear data with correlated photo-$z$ uncertainties: constraints from DESY1 and HSC-DR1

ArXiv 2210.13434 (2022)

Authors:

Carlos García-García, David Alonso, Pedro G Ferreira, Boryana Hadzhiyska, Andrina Nicola, Carles Sánchez, Anže Slosar
Details from ArXiV

Impact of the Universe's expansion rate on constraints on modified growth of structure

Physical Review D American Physical Society 106:8 (2022) 83523

Authors:

Jaime Ruiz-Zapatero, David Alonso, Pedro G Ferreira, Carlos Garcia-Garcia

Abstract:

In the context of modified gravity, at the linear level, the growth of structure in the Universe will be affected by modifications to the Poisson equation and by the background expansion rate of the Universe. It has been shown that these two effects lead to a degeneracy which must be properly accounted for if one is to place reliable constraints on new forces on large scales or, equivalently, modifications to general relativity. In this paper we show that current constraints are such that assumptions about the background expansion have little impact on constraints on modifications to gravity. We do so by considering the background of a flat, Λ cold dark matter universe, a universe with a more general equation of state for the dark energy, and finally, a general, model-independent, expansion rate. We use Gaussian processes to model modifications to Poisson's equation and, in the case of a general expansion rate, to model the redshift-dependent Hubble rate. We identify a degeneracy between modifications to Poisson's equation and the background matter density, ωM, which can only be broken by assuming a model-dependent expansion rate. We show that, with current data, the constraints on modifications to the Poisson equation via measurements of the growth rate range between 10-20% depending on the strength of our assumptions on the Universe's expansion rate.
More details from the publisher
Details from ORA
More details
More details

Constraining the physics of star formation from CIB-cosmic shear cross-correlations

ArXiv 2209.05472 (2022)

Authors:

Baptiste Jego, David Alonso, Carlos García-García, Jaime Ruiz-Zapatero
Details from ArXiV

The impact of the Universe's expansion rate on constraints on modified growth of structure

ArXiv 2207.09896 (2022)

Authors:

Jaime Ruiz-Zapatero, David Alonso, Pedro G Ferreira, Carlos Garcia-Garcia
Details from ArXiV

The star formation history in the last 10 billion years from CIB cross-correlations

ArXiv 2206.15394 (2022)

Authors:

Baptiste Jego, Jaime Ruiz-Zapatero, Carlos García-García, Nick Koukoufilippas, David Alonso
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet