Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Carlos Garcia-Garcia

Visitor

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
carlos.garcia-garcia@physics.ox.ac.uk
Telephone: 01865 283015
Denys Wilkinson Building, room 555E
GitLab
GitHub
Publications (InspireHEP)
  • About
  • Publications

The growth of density perturbations in the last ∼10 billion years from tomographic large-scale structure data

Journal of Cosmology and Astroparticle Physics IOP Publishing 10:2021 (2021) 030

Authors:

Carlos Garcia-Garcia, Jaime Ruiz Zapatero, David Alonso, Emilio Bellini, Pedro Ferreira, Eva Mueller, Andrina Nicola, Pilar Ruiz-Lapuente

Abstract:

In order to investigate the origin of the ongoing tension between the amplitude of matter fluctuations measured by weak lensing experiments at low redshifts and the value inferred from the cosmic microwave background anisotropies, we reconstruct the evolution of this amplitude from z ∼ 2 using existing large-scale structure data. To do so, we decouple the linear growth of density inhomogeneities from the background expansion, and constrain its redshift dependence making use of a combination of 6 different data sets, including cosmic shear, galaxy clustering and CMB lensing. We analyze these data under a consistent harmonic-space angular power spectrum-based pipeline. We show that current data constrain the amplitude of fluctuations mostly in the range 0.2 < z < 0.7, where it is lower than predicted by Planck. This difference is mostly driven by current cosmic shear data, although the growth histories reconstructed from different data combinations are consistent with each other, and we find no evidence of systematic deviations in any particular experiment. In spite of the tension with Planck, the data are well-described by the ΛCDM model, albeit with a lower value of S8 ≡ σ8(Ωm/0.3)0.5 . As part of our analysis, we find constraints on this parameter of S8 = 0.7781 ± 0.0094 (68% confidence level), reaching almost percent-level errors comparable with CMB measurements, and 3.4σ away from the value found by Planck.
More details from the publisher
Details from ORA
More details

The growth of density perturbations in the last $\sim$10 billion years from tomographic large-scale structure data

(2021)

Authors:

Carlos García-García, Jaime Ruiz Zapatero, David Alonso, Emilio Bellini, Pedro G Ferreira, Eva-Maria Mueller, Andrina Nicola, Pilar Ruiz-Lapuente
More details from the publisher
Details from ArXiV

Cosmic shear power spectra in practice

Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:3 (2021) 067

Authors:

A Nicola, Carlos Garcia-Garcia, David Alonso, J Dunkley, Pedro Ferreira, A Slosar, Dn Spergel

Abstract:

Cosmic shear is one of the most powerful probes of Dark Energy, targeted by several current and future galaxy surveys. Lensing shear, however, is only sampled at the positions of galaxies with measured shapes in the catalog, making its associated sky window function one of the most complicated amongst all projected cosmological probes of inhomogeneities, as well as giving rise to inhomogeneous noise. Partly for this reason, cosmic shear analyses have been mostly carried out in real-space, making use of correlation functions, as opposed to Fourier-space power spectra. Since the use of power spectra can yield complementary information and has numerical advantages over real-space pipelines, it is important to develop a complete formalism describing the standard unbiased power spectrum estimators as well as their associated uncertainties. Building on previous work, this paper contains a study of the main complications associated with estimating and interpreting shear power spectra, and presents fast and accurate methods to estimate two key quantities needed for their practical usage: the noise bias and the Gaussian covariance matrix, fully accounting for survey geometry, with some of these results also applicable to other cosmological probes. We demonstrate the performance of these methods by applying them to the latest public data releases of the Hyper Suprime-Cam and the Dark Energy Survey collaborations, quantifying the presence of systematics in our measurements and the validity of the covariance matrix estimate. We make the resulting power spectra, covariance matrices, null tests and all associated data necessary for a full cosmological analysis publicly available.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models

(2021)

Authors:

Dina Traykova, Emilio Bellini, Pedro G Ferreira, Carlos García-García, Johannes Noller, Miguel Zumalacárregui
More details from the publisher
Details from ArXiV

Theoretical priors in scalar-tensor cosmologies: thawing quintessence

Physical Review D American Physical Society 101:6 (2020) 63508

Authors:

Carlos Garcia-Garcia, Emilio Bellini, Pedro Ferreira, Dina Traykova, Miguel Zumalacarregui

Abstract:

The late time acceleration of the Universe can be characterized in terms of an extra, time-dependent, component of the Universe—dark energy. The simplest proposal for dark energy is a scalar-tensor theory—quintessence—which consists of a scalar field, ϕ, whose dynamics is solely dictated by its potential, V(ϕ). Such a theory can be uniquely characterized by the equation of state of the scalar field energy momentum-tensor. We find the time dependence of the equation of state for a broad family of potentials and, using this information, we propose an analytic prior distribution for the most commonly used parametrization. We show that this analytic prior can be used to accurately predict the distribution of observables for the next generation of cosmological surveys. Including the theoretical priors in the comparison with observations considerably improves the constraints on the equation of state.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet