Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Carlos Garcia-Garcia

Beecroft Fellow

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
carlos.garcia-garcia@physics.ox.ac.uk
Telephone: 01865 283015
Denys Wilkinson Building, room 555E
GitLab
GitHub
Publications (InspireHEP)
  • About
  • Publications

Galaxy bias in the era of LSST: perturbative bias expansions

(2023)

Authors:

Andrina Nicola, Boryana Hadzhiyska, Nathan Findlay, Carlos García-García, David Alonso, Anže Slosar, Zhiyuan Guo, Nickolas Kokron, Raúl Angulo, Alejandro Aviles, Jonathan Blazek, Jo Dunkley, Bhuvnesh Jain, Marcos Pellejero, James Sullivan, Christopher W Walter, Matteo Zennaro
More details from the publisher
Details from ArXiV

Constraining cosmology with the Gaia-unWISE Quasar Catalog and CMB lensing: structure growth

(2023)

Authors:

David Alonso, Giulio Fabbian, Kate Storey-Fisher, Anna-Christina Eilers, Carlos García-García, David W Hogg, Hans-Walter Rix
More details from the publisher
Details from ArXiV

Combining cosmic shear data with correlated photo-z uncertainties: constraints from DESY1 and HSC-DR1

Journal of Cosmology and Astroparticle Physics IOP Publishing (2023)

Authors:

Carlos Garcia-Garcia, David Alonso, Pedro Ferreira, Boryana Hadzhiyska, Andrina Nicola, Carles Sanchez, Anze Slosar

Abstract:

An accurate calibration of the source redshift distribution p(z) is a key aspect in the analysis of cosmic shear data. This, one way or another, requires the use of spectroscopic or high-quality photometric samples. However, the difficulty to obtain colour-complete spectroscopic samples matching the depth of weak lensing catalogs means that the analyses of different cosmic shear datasets often use the same samples for redshift calibration. This introduces a source of statistical and systematic uncertainty that is highly correlated across different weak lensing datasets, and which must be accurately characterised and propagated in order to obtain robust cosmological constraints from their combination. In this paper we introduce a method to quantify and propagate the uncertainties on the source redshift distribution in two different surveys sharing the same calibrating sample. The method is based on an approximate analytical marginalisation of the p(z) statistical uncertainties and the correlated marginalisation of residual systematics. We apply this method to the combined analysis of cosmic shear data from the DESY1 data release and the HSC-DR1 data, using the COSMOS 30-band catalog as a common redshift calibration sample. We find that, although there is significant correlation in the uncertainties on the redshift distributions of both samples, this does not change the final constraints on cosmological parameters significantly. The same is true also for the impact of residual systematic uncertainties from the errors in the COSMOS 30-band photometric redshifts. Additionally, we show that these effects will still be negligible in Stage-IV datasets. Finally, the combination of DESY1 and HSC-DR1 allows us to constrain the “clumpiness” parameter to S8 = 0.768+0.021 −0.017. This corresponds to a ∼ √ 2 improvement in uncertainties with respect to either DES or HSC alone.
More details from the publisher
Details from ORA
More details

Combining cosmic shear data with correlated photo-$z$ uncertainties: constraints from DESY1 and HSC-DR1

(2022)

Authors:

Carlos García-García, David Alonso, Pedro G Ferreira, Boryana Hadzhiyska, Andrina Nicola, Carles Sánchez, Anže Slosar
More details from the publisher
Details from ArXiV

Impact of the Universe's expansion rate on constraints on modified growth of structure

Physical Review D American Physical Society 106:8 (2022) 83523

Authors:

Jaime Ruiz-Zapatero, David Alonso, Pedro G Ferreira, Carlos Garcia-Garcia

Abstract:

In the context of modified gravity, at the linear level, the growth of structure in the Universe will be affected by modifications to the Poisson equation and by the background expansion rate of the Universe. It has been shown that these two effects lead to a degeneracy which must be properly accounted for if one is to place reliable constraints on new forces on large scales or, equivalently, modifications to general relativity. In this paper we show that current constraints are such that assumptions about the background expansion have little impact on constraints on modifications to gravity. We do so by considering the background of a flat, Λ cold dark matter universe, a universe with a more general equation of state for the dark energy, and finally, a general, model-independent, expansion rate. We use Gaussian processes to model modifications to Poisson's equation and, in the case of a general expansion rate, to model the redshift-dependent Hubble rate. We identify a degeneracy between modifications to Poisson's equation and the background matter density, ωM, which can only be broken by assuming a model-dependent expansion rate. We show that, with current data, the constraints on modifications to the Poisson equation via measurements of the growth rate range between 10-20% depending on the strength of our assumptions on the Universe's expansion rate.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet