Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Roy Grainger

Reader in Atmospheric Physics

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Earth Observation Data Group
Don.Grainger@physics.ox.ac.uk
Telephone: 01865 (2)72888
Robert Hooke Building, room S47
  • About
  • Publications

Measuring volcanic plume and ash properties from space

Geological Society, London, Special Publications Geological Society of London 380:1 (2013) 293-320

Authors:

RG Grainger, DM Peters, GE Thomas, AJA Smith, R Siddans, E Carboni, A Dudhia

Abstract:

Abstract The remote sensing of volcanic ash plumes from space can provide a warning of an aviation hazard and knowledge on eruption processes and radiative effects. In this paper new algorithms are presented to provide volcanic plume properties from measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Advanced Along Track Scanning Radiometer (AATSR) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI). A challenge of remote sensing is to provide near-real-time methods to identify, and so warn of, the presence of volcanic ash. To achieve this, a singular vector decomposition method has been developed for the MIPAS instrument on board the Environmental Satellite. This method was applied to observations of the ash clouds from the eruptions of Nabro and the Puyehue–Cordón Caulle in 2011 and led to a sensitive volcanic signal flag which was capable of tracking changes in the volcanic signal spectra as the plume evolved. A second challenge for remote sensing is to identify the ash plume height. This is a critical parameter for the initialization of algorithms that numerically model the evolution and transport of a volcanic plume. As MIPAS is a limb sounder, the identification of ash also provides an estimate of height provided the plume is above about 6 km. This is complemented by a new algorithm, Stereo Ash Plume Height Retrieval Algorithm, that identifies plume height using the parallax between images provided by Along Track Scanning Radiometer-type instruments. The algorithm was tested on an image taken at 14:01 GMT on 6 June 2011 of the Puyehue–Cordón Caulle eruption plume and gave a height of 11.9±1.4 km, which agreed with the value derived from the location of the plume shadow (12.7±1.8 km). This plume height was similar to the height observed by MIPAS (12 ± 1.5 km) at 02:56 GMT on 6 June. The quantitative use of satellite imagery and the full exploitation of high-resolution spectral measurements of ash depends upon knowing the optical properties of the observed ash. Laboratory measurements of ash from the 1993 eruption of Mt Aso, Japan have been used to determine the refractive indices from 1 to 20 µm. These preliminary measurements have spectral features similar to ash values that have been used to date, albeit with slightly different positions and strengths of the absorption bands. The refractive indices have been used to retrieve ash properties (plume height, optical depth and ash effective radius) from AATSR and SEVIRI instruments using two versions of Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. For AATSR a new ash cloud type was used in ORAC for the analysis of the plume from the 2011 Eyjafjallajökull eruption. For the first c . 500 km of the plume ORAC gave values for plume height of 2.5–6.5 km, optical depth 1–2.5 and effective radius 3–7 µm, which are in agreement with other observations. A weakness of the algorithm occurs when underlying cloud invalidates the assumption of a single cloud layer. This is rectified in a modified version of ORAC applied to SEVIRI measurements. In this case an extra model of a cloud underlying the ash plume was included in the range of applied models. In cases where the plume overlay cloud, this new model worked well, showing good agreement with correlative Cloud–Aerosol Lidar with Orthogonal Polarization observations.
More details from the publisher
More details

A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010

Atmospheric Chemistry and Physics Copernicus Publications 12:23 (2012) 11417-11434

Authors:

E Carboni, R Grainger, J Walker, A Dudhia, R Siddans
More details from the publisher
More details

Stratospheric aerosol particles and solar-radiation management

Nature Climate Change 2:10 (2012) 713-719

Authors:

FD Pope, P Braesicke, RG Grainger, M Kalberer, IM Watson, PJ Davidson, RA Cox

Abstract:

The deliberate injection of particles into the stratosphere has been suggested as a possible geoengineering scheme to mitigate the global warming aspect of climate change. Injected particles scatter solar radiation back to space and thus reduce the radiative balance of Earth. Previous studies investigating this scheme have focused primarily on sulphuric acid particles to mimic volcanic injections of stratospheric aerosol. However, the composition and size of volcanic sulphuric acid particles are far from optimal for scattering solar radiation. We show that aerosols with other compositions, such as minerals, could be used to dramatically increase the amount of light scatter achieved on a per mass basis, thereby reducing the particle mass required for injection. The chemical consequences of injecting such particles into the stratosphere are discussed with regard to the fate of the ozone layer. Research questions are identified with which to assess the feasibility of such geoengineering schemes. © 2012 Macmillan Publishers Limited. All rights reserved.
More details from the publisher
More details

Estimation of a lidar's overlap function and its calibration by nonlinear regression

Applied Optics 51:21 (2012) 5130-5143

Authors:

AC Povey, RG Grainger, DM Peters, JL Agnew, D Rees

Abstract:

The overlap function of a Raman channel for a lidar system is retrieved by nonlinear regression using an analytic description of the optical system and a simple model for the extinction profile, constrained by aerosol optical thickness. Considering simulated data, the scheme is successful even where the aerosol profile deviates significantly from the simple model assumed. Applicationto real dataisfound to reduce by a factor of 1.4-2.0 the root-mean-square difference between the attenuated backscatter coefficient as measured by the calibrated instrument and a commercial instrument. © 2012 Optical Society of America.
More details from the publisher
Details from ORA
More details
More details

Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements

Remote Sensing of Environment 121 (2012) 236-251

Authors:

L Guanter, C Frankenberg, A Dudhia, PE Lewis, J Gómez-Dans, A Kuze, H Suto, RG Grainger

Abstract:

The recent advent of very high spectral resolution measurements by the Fourier Transform Spectrometer (FTS) on board the Greenhouse gases Observing SATellite (GOSAT) platform has made possible the retrieval of sun-induced terrestrial chlorophyll fluorescence (F s) on a global scale. The basis for this retrieval is the modeling of the in-filling of solar Fraunhofer lines by fluorescence. This contribution to the field of space-based carbon cycle science presents an alternative method for the retrieval of F s from the Fraunhofer lines resolved by GOSAT-FTS measurements. The method is based on a linear forward model derived by a singular vector decomposition technique, which enables a fast and robust inversion of top-of-atmosphere radiance spectra. Retrievals are performed in two spectral micro-windows (~2-3nm width) containing several strong Fraunhofer lines. The statistical nature of this approach allows to avoid potential retrieval errors associated with the modeling of the instrument line shape or with a given extraterrestrial solar irradiance data set. The method has been tested on 22 consecutive months of global GOSAT-FTS measurements. The fundamental basis of this F s retrieval approach and the results from the analysis of the global F s data set produced with it are described in this work. Among other findings, the data analysis has shown (i) a very good comparison of F s intensity levels and spatial patterns with the state-of-the-art physically-based F s retrieval approach described in Frankenberg et al. (2011a), (ii) the overall good agreement between F s annual and seasonal patterns and other space-based vegetation parameters, (iii) the need for a biome-dependent scaling from F s to gross primary production, and (iv) the apparent existence of strong directional effects in the F s emission from forest canopies. These results reinforce the confidence in the feasibility of F s retrievals with GOSAT-FTS and open several points for future research in this emerging field. © 2012 Elsevier Inc.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet