Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Lesley.Gray@physics.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6

Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU) 12:9 (2020)

Authors:

Jon Robson, Yevgeny Aksenov, Thomas J Bracegirdle, Oscar Dimdore‐Miles, Paul T Griffiths, Daniel P Grosvenor, Daniel LR Hodson, James Keeble, Claire MacIntosh, Alex Megann, Scott Osprey, Adam C Povey, David Schröder, Mingxi Yang, Alexander T Archibald, Ken S Carslaw, Lesley Gray, Colin Jones, Brian Kerridge, Diane Knappett, Till Kuhlbrodt, Maria Russo, Alistair Sellar, Richard Siddans, Bablu Sinha, Rowan Sutton, Jeremy Walton, Laura J Wilcox
More details from the publisher

The American monsoon system in HadGEM3.0 and UKESM1

Weather and Climate Dynamics Copernicus Publications 1:2 (2020) 349-371

Authors:

Jorge L García-Franco, Lesley J Gray, Scott Osprey

Abstract:

The simulated climate of the American monsoon system (AMS) in the UK models HadGEM3 GC3.1 (GC3) and the Earth system model UKESM1 is assessed and compared to observations and reanalysis. We evaluate the pre-industrial control, AMIP and historical experiments of UKESM1 and two configurations of GC3: a low (1.875∘×1.25∘) and a medium (0.83∘×0.56∘) resolution. The simulations show a good representation of the seasonal cycle of temperature in monsoon regions, although the historical experiments overestimate the observed summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American monsoon of all the simulations agree well with observations and reanalysis, showing a notable improvement from previous versions of the HadGEM model. The models reasonably simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger-than-observed difference between the two peaks of precipitation and the dry period. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), cloud cover and regional temperature patterns are significant and influence the simulated regional rainfall in the South American monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. The precipitation biases over the Amazon and southeastern Brazil are greatly reduced in the AMIP simulations, highlighting that the Atlantic sea surface temperatures are key for representing precipitation in the South American monsoon. El Niño–Southern Oscillation (ENSO) teleconnections, of precipitation and temperature, to the AMS are reasonably simulated by all the experiments. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the biases in UKESM1 and the low-resolution configuration of GC3 are very similar for precipitation, ITCZ and Walker circulation; i.e. the inclusion of Earth system processes appears to make no significant difference for the representation of the AMS rainfall. In contrast, the medium-resolution HadGEM3 N216 simulation outperforms the low-resolution simulations due to improved SSTs and circulation.
More details from the publisher
More details

Historical Simulations With HadGEM3‐GC3.1 for CMIP6

Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU) 12:6 (2020)

Authors:

Martin B Andrews, Jeff K Ridley, Richard A Wood, Timothy Andrews, Edward W Blockley, Ben Booth, Eleanor Burke, Andrea J Dittus, Piotr Florek, Lesley J Gray, Stephen Haddad, Steven C Hardiman, Leon Hermanson, Dan Hodson, Emma Hogan, Gareth S Jones, Jeff R Knight, Till Kuhlbrodt, Stergios Misios, Matthew S Mizielinski, Mark A Ringer, Jon Robson, Rowan T Sutton
More details from the publisher
More details

On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter

Quarterly Journal of the Royal Meteorological Society Wiley 146:729 (2020) 1939-1959

Authors:

Hua Lu, Matthew H Hitchman, Lesley J Gray, James A Anstey, Scott M Osprey

Abstract:


The boreal‐winter stratospheric polar vortex is more disturbed when the quasi‐biennial oscillation (QBO) in the lower stratosphere is in its easterly phase (eQBO), and more stable during the westerly phase (wQBO). This so‐called “Holton‐Tan effect” (HTE) is known to involve Rossby waves (RWs) but the details remain obscure.

This tropical‐extratropical connection is re‐examined in an attempt to explain its intra‐seasonal variation and its relation to Rossby wave breaking (RWB). Reanalyses in isentropic coordinates from the National Center for Environmental Prediction Climate Forecast System for the 1979 – 2017 period are used to evaluate the relevant features of RWB in the context of waveguide, wave mean‐flow interaction, and the QBO‐induced meridional circulation. During eQBO, the net extratropical wave forcing is enhanced in early winter with ~25% increase in upward propagating PRWs of zonal wavenumber 1 (wave‐1). RWB is also enhanced in the lower stratosphere, characterized by convergent anomalies in the subtropics and at high‐latitudes and strengthened waveguide in between at 20‐40°N, 350‐650 K. In late winter, RWB leads to finite amplitude growth, which hinders upward propagating PRWs of zonal wavenumber 2 and 3 (wave‐2‐3). During wQBO, RWB in association with wave‐2‐3 is enhanced in the upper stratosphere. Wave absorption/mixing in the surf zone reinforces a stable polar vortex in early to middle winter. A poleward confinement of extratropical waveguide in the upper stratosphere forces RWB to extend downward around January. A strengthening of upward propagating wave‐2‐3 follows and the polar‐vortex response switches from reinforcement to disturbance around February, thus a sign reversal of the HTE in late winter.
More details from the publisher
Details from ORA
More details

Uncertainty in the response of sudden stratospheric warmings and stratosphere‐troposphere coupling to quadrupled CO2 concentrations in CMIP6 models

Journal of Geophysical Research: Atmospheres American Geophysical Union 125:6 (2020) e2019JD032345

Authors:

B Ayarzagüena, AJ Charlton-Perez, AH Butler, P Hitchcock, IR Simpson, LM Polvani, N Butchart, EP Gerber, L Gray, B Hassler, P Lin, F Lott, E Manzini, R Mizuta, C Orbe, S Osprey, D Saint-Martin, M Sigmond, M Taguchi, EM Volodin, S Watanabe

Abstract:

Major sudden stratospheric warmings (SSWs), vortex formation and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2 forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2 (4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2 forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: there is no indication of a change under 4xCO2 forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex, and thus a longer season of stratosphere‐troposphere coupling.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet